Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations
Abstract
1. Introduction
2. The Underwater OBS Beam Emission Model
2.1. Angular Power Density of Source
2.2. OBS Beam Emission Model
2.3. Method for Modeling the Three-Dimensional Spatial Coverage of OBS Beams
3. MOPSO Optimization
Algorithm 1. The MOPSO algorithm pseudo-code. |
Initialize Randomly generate each particle’s velocity and position Evaluate the fitness value of each particle Fill the of each particle with its current position for = 1: MaxIt for = 1: N Update particle velocity Update particle position Update end for Add non-dominated particles to repository Keep non-dominated members in the repository if non-dominated particles number > archive size Updating the elite solution set, delete the extra repository members end if end for |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schill, F.; Bahr, A.; Martinoli, A. Vertex: A new distributed underwater robotic platform for environmental monitoring. In Distributed Autonomous Robotic Systems: The 13th International Symposium; Springer: Cham, Switzerland, 2018; pp. 679–693. [Google Scholar] [CrossRef]
- González-García, J.; Gómez-Espinosa, A.; Cuan-Urquizo, E.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Escobedo Cabello, J.A. Autonomous underwater vehicles: Localization, navigation, and communication for collaborative missions. Appl. Sci. 2020, 10, 1256. [Google Scholar] [CrossRef]
- Hoeher, P.A.; Sticklus, J.; Harlakin, A. Underwater optical wireless communications in swarm robotics: A tutorial. IEEE Commun. Surv. Tutor. 2021, 23, 2630–2659. [Google Scholar] [CrossRef]
- Connor, J.; Champion, B.; Joordens, M.A. Current algorithms, communication methods and designs for underwater swarm robotics: A review. IEEE Sens. J. 2020, 21, 153–169. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Saeed, N.; Celik, A.; Al-Naffouri, T.Y.; Alouini, M.-S. Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Netw. 2019, 94, 101935. [Google Scholar] [CrossRef]
- Pontbriand, C.; Farr, N.; Hansen, J.; Kinsey, J.C.; Pelletier, L.-P.; Ware, J.; Fourie, D. Wireless data harvesting using the AUV Sentry and WHOI optical modem. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Sabril, S.; Jasman, F.; Hassan, W.H.W.; Mutalip, Z.A.; Mohd-Mokhtar, R.; Hassan, Z. The Effect of Medium Inhomogeneity in Modeling Underwater Optical Wireless Communication. J. Commun. 2021, 16, 386–393. [Google Scholar] [CrossRef]
- Lv, Z.; He, G.; Qiu, C.; Liu, Z. Investigation of underwater wireless optical communications links with surface currents and tides for oceanic signal transmission. IEEE Photonics J. 2021, 13, 1–8. [Google Scholar] [CrossRef]
- Nasser, A.G.; Ali, M.A.A. Performance of LED for line-of-sight (LoS) underwater wireless optical communication system. J. Opt. Commun. 2024, 44, s1355–s1363. [Google Scholar] [CrossRef]
- Yang, X.; Tong, Z.; Zhang, H.; Zhang, Y.; Dai, Y.; Zhang, C.; Chen, X.; Xu, J. 7-M/130-Mbps LED-to-LED underwater wireless optical communication based on arrays of series-connected LEDs and a coaxial lens group. J. Light. Technol. 2022, 40, 5901–5909. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, M.; Wang, X.; Ren, X. Design and implementation of more than 50m real-time underwater wireless optical communication system. J. Light. Technol. 2022, 40, 3654–3668. [Google Scholar] [CrossRef]
- Wang, L.; Qi, Z.; Liu, P.; Hu, F.; Li, J.; Wang, Y. Underwater wireless video communication using blue light. J. Light. Technol. 2023, 41, 5951–5957. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Xu, Z. A cost-efficient real-time 25 Mb/s system for LED-UOWC: Design, channel coding, FPGA implementation, and characterization. J. Light. Technol. 2018, 36, 2627–2637. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Ye, D.; Wang, L.; Fu, K.; Piao, J.; Wang, Y. A real-time, full-duplex system for underwater wireless optical communication: Hardware structure and optical link model. IEEE Access 2020, 8, 109372–109387. [Google Scholar] [CrossRef]
- Han, B.; Zhao, W.; Zheng, Y.; Meng, J.; Wang, T.; Han, Y.; Wang, W.; Su, Y.; Duan, T.; Xie, X. Experimental demonstration of quasi-omni-directional transmitter for underwater wireless optical communication based on blue LED array and freeform lens. Opt. Commun. 2019, 434, 184–190. [Google Scholar] [CrossRef]
- Williams, A.J.; Laycock, L.L.; Griffith, M.S.; McCarthy, A.G.; Rowe, D.P. Acquisition and tracking for underwater optical communications. In Proceedings of the Advanced Free-Space Optical Communication Techniques and Applications III, Warsaw, Poland, 11–14 September 2017; pp. 44–54. [Google Scholar] [CrossRef]
- McRaven, C.; Pelletier, L.-P.; Ware, J.; Gardner, A.; Farr, N.; Collins, J.; Purcell, M. Wireless retrieval of high-rate ocean bottom seismograph data and time synchronization using the WHOI optical modem and REMUS AUV. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Barroso, A.R.F.; Baiden, G.; Johnson, J. Teleoperation of mining equipment using optical wireless communications. In Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks, Sapporo, Japan, 7–10 July 2015; pp. 727–733. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, X.; Chen, X.; Zhang, H.; Zhang, Y.; Zou, H.; Zhao, L.; Xu, J. Quasi-omnidirectional transmitter for underwater wireless optical communication systems using a prismatic array of three high-power blue LED modules. Opt. Express 2021, 29, 20262–20274. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Tong, Z.; Yang, X.; Zhang, Y.; Zhang, C.; Xu, J. Omnidirectional optical communication system designed for underwater swarm robotics. Opt. Express 2023, 31, 18630–18644. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Ling, Y. New approach for designing an underwater free-space optical communication system. Front. Mar. Sci. 2022, 9, 971559. [Google Scholar] [CrossRef]
- Doniec, M.; Angermann, M.; Rus, D. An end-to-end signal strength model for underwater optical communications. IEEE J. Ocean. Eng. 2013, 38, 743–757. [Google Scholar] [CrossRef]
- Moreno, I.; Sun, C.-C.; Ivanov, R. Far-field condition for light-emitting diode arrays. Appl. Opt. 2009, 48, 1190–1197. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Yuksel, M.; Akella, J.; Kalyanaraman, S.; Dutta, P. Free-space-optical mobile ad hoc networks: Auto-configurable building blocks. Wirel. Netw. 2009, 15, 295–312. [Google Scholar] [CrossRef]
- Huang, Q.; Wen, W.; Liu, M.; Du, P.; Chen, C. Energy-Efficient Unmanned Aerial Vehicle-Aided Visible Light Communication with an Angle Diversity Transmitter for Joint Emergency Illumination and Communication. Sensors 2023, 23, 7886. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Number of LEDs in an LED array | 10 | |
Refractive index of air | 1 | |
Refractive index of glass | 1.5 | |
Refractive index of water | 1.33 | |
Diameter of the receiving aperture | d | 50 mm |
Minimum light intensity reception threshold | E | −41 dBm |
Attenuation coefficient of pure seawater | 0.056 m−1 | |
Attenuation coefficient of clear seawater | 0.151 m−1 | |
Maximum number of iterations | 50 | |
Population size of particles | 20 | |
Archive size | 8 | |
Inertia weight coefficient | 0.9 |
(°) | (°) | Transmission Distribution Standard Deviation | Spatial Coverage Volume of the Beam (m3) |
---|---|---|---|
80 | 57 | 0.2657 | 15,487 |
66 | 60 | 0.4995 | 18,393 |
59 | 61 | 0.6881 | 20,427 |
52 | 59 | 0.9746 | 22,543 |
47 | 58 | 1.2329 | 24,495 |
41 | 59 | 1.6900 | 27,597 |
32 | 60 | 2.7345 | 32,850 |
21 | 59 | 5.3526 | 37,041 |
(°) | (°) | Transmission Distribution Standard Deviation | Spatial Coverage Volume of the Beam (m3) |
---|---|---|---|
80 | 57 | 0.1569 | 4321 |
71 | 63 | 0.2546 | 4742 |
61 | 61 | 0.3536 | 5280 |
53 | 61 | 0.4664 | 5780 |
46 | 60 | 0.6181 | 6298 |
42 | 62 | 0.8143 | 6751 |
31 | 65 | 1.4720 | 7767 |
22 | 61 | 2.5466 | 8269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Ma, C.; Tian, X.; Guo, H.; Ao, J. Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations. Photonics 2025, 12, 4. https://doi.org/10.3390/photonics12010004
Shi J, Ma C, Tian X, Guo H, Ao J. Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations. Photonics. 2025; 12(1):4. https://doi.org/10.3390/photonics12010004
Chicago/Turabian StyleShi, Junjie, Chunbo Ma, Xu Tian, Hanjun Guo, and Jun Ao. 2025. "Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations" Photonics 12, no. 1: 4. https://doi.org/10.3390/photonics12010004
APA StyleShi, J., Ma, C., Tian, X., Guo, H., & Ao, J. (2025). Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations. Photonics, 12(1), 4. https://doi.org/10.3390/photonics12010004