Multi-Fresnel-Lens Pumping Approach for Simultaneous Emission of Seven TEM00-Mode Beams with 3.73% Conversion Efficiency
Abstract
:1. Introduction
- Large Fresnel lenses are highly susceptible to slight movements due to wind, affecting the position and shape of the focal spot and thus making it difficult to maintain the same solar laser power for a relatively long period of time during experimental work.
- Some of the components responsible for the mechanical fixation of laser resonator mirrors would have ended up obstructing a portion of the concentrated sunlight coming from the 0.99 m diameter Fresnel lens.
2. Description of the Concept
3. Numerical Modeling
3.1. Modeling of the Design Parameters through Zemax®
3.2. Modeling of the Laser Resonator Parameters through LASCAD™
4. Numerical Optimization of the Solar Laser System
4.1. Solar Laser Output Performance
4.2. Thermal Analysis of the Ce:Nd:YAG Rods
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA Renewable Power’s Growth Is Being Turbocharged as Countries Seek to Strengthen Energy Security. Available online: https://www.iea.org/news/renewable-power-s-growth-is-being-turbocharged-as-countries-seek-to-strengthen-energy-security (accessed on 20 June 2024).
- Graham-Rowe, D. Solar-Powered Lasers. Nat. Photonics 2010, 4, 64–65. [Google Scholar] [CrossRef]
- Yabe, T.; Bagheri, B.; Ohkubo, T.; Uchida, S.; Yoshida, K.; Funatsu, T.; Oishi, T.; Daito, K.; Ishioka, M.; Yasunaga, N.; et al. 100 W-Class Solar Pumped Laser for Sustainable Magnesium-Hydrogen Energy Cycle. J. Appl. Phys. 2008, 104, 083104. [Google Scholar] [CrossRef]
- Yan, B.; Li, Y.; Cao, W.; Zeng, Z.; Liu, P.; Ke, Z.; Yang, G. Efficient and Rapid Hydrogen Extraction from Ammonia–Water via Laser Under Ambient Conditions without Catalyst. J. Am. Chem. Soc. 2024, 146, 4864–4871. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.M.; Yang, S.H.; Wang, Y.; Ke, J.Y.; Zhang, H.Y. Demonstration of a Free-Space Optical Communication System Using a Solar-Pumped Laser as Signal Transmitter. Laser Phys. Lett. 2017, 14, 055804. [Google Scholar] [CrossRef]
- Motohiro, T.; Takeda, Y.; Ito, H.; Hasegawa, K.; Ikesue, A.; Ichikawa, T.; Higuchi, K.; Ichiki, A.; Mizuno, S.; Ito, T.; et al. Concept of the Solar-Pumped Laser-Photovoltaics Combined System and Its Application to Laser Beam Power Feeding to Electric Vehicles. Jpn. J. Appl. Phys. 2017, 56, 08MA07. [Google Scholar] [CrossRef]
- Lando, M.; Kagan, J.A.; Shimony, Y.; Kalisky, Y.Y.; Noter, Y.; Yogev, A.; Rotman, S.R.; Rosenwaks, S. Solar-Pumped Solid State Laser Program. In Proceedings of the 10th Meeting on Optical Engineering in Israel, Jerusalem, Israel, 2–6 March 1997; Volume 3110, p. 196. [Google Scholar]
- Hemmati, H.; Biswas, A.; Djordjevic, I.B. Deep-Space Optical Communications: Future Perspectives and Applications. Proc. IEEE 2011, 99, 2020–2039. [Google Scholar] [CrossRef]
- Rather, J.D.G.; Gerry, E.T.; Zeiders, G.W. Investigation of Possibilities for Solar Powered High Energy Lasers in Space; NASA Technical Reports Server (NTRS); W. J. Schafer Associates, Inc.: Arlington, VA, USA, 1977. [Google Scholar]
- Vasile, M.; Maddock, C.A. Design of a Formation of Solar Pumped Lasers for Asteroid Deflection. Adv. Space Res. 2012, 50, 891–905. [Google Scholar] [CrossRef]
- Kiss, Z.J.; Lewis, H.R.; Duncan, R.C., Jr. Sun Pumped Continuous Optical Maser. Appl. Phys. Lett. 1963, 2, 93–94. [Google Scholar] [CrossRef]
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Lando, M.; Kagan, J.; Linyekin, B.; Dobrusin, V. A Solar-Pumped Nd:YAG Laser in the High Collection Efficiency Regime. Opt. Commun. 2003, 222, 371–381. [Google Scholar] [CrossRef]
- Masuda, T.; Iyoda, M.; Yasumatsu, Y.; Dottermusch, S.; Howard, I.A.; Richards, B.S.; Bisson, J.-F.; Endo, M. A Fully Planar Solar Pumped Laser Based on a Luminescent Solar Collector. Commun. Phys. 2020, 3, 60. [Google Scholar] [CrossRef]
- Liang, D.; Vistas, C.R.; Garcia, D.; Tibúrcio, B.D.; Catela, M.; Costa, H.; Guillot, E.; Almeida, J. Most Efficient Simultaneous Solar Laser Emissions from Three Ce:Nd:YAG Rods within a Single Pump Cavity. Sol. Energy Mater. Sol. Cells 2022, 246, 111921. [Google Scholar] [CrossRef]
- Cai, Z.; Zhao, C.; Zhao, Z.; Zhang, J.; Zhang, Z.; Zhang, H. Efficient 38.8 W/m2 Solar Pumped Laser with a Ce:Nd:YAG Crystal and a Fresnel Lens. Opt. Express 2023, 31, 1340. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Vistas, C.R.; Guillot, E. Solar-Pumped Nd:YAG Laser with 31.5 W/m2 Multimode and 7.9 W/m2 TEM00-Mode Collection Efficiencies. Sol. Energy Mater. Sol. Cells 2017, 159, 435–439. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Catela, M.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Lowest Threshold Solar-Pumped Ce:Nd:YAG Laser with 2.06% Solar-to-TEM00 Mode Laser Conversion Efficiency. Sol. Energy Mater. Sol. Cells 2024, 270, 112817. [Google Scholar] [CrossRef]
- Catela, M.; Liang, D.; Almeida, J.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Stable Emissions from a Four-Rod Nd:YAG Solar Laser with ±0.5° Tracking Error Compensation Capacity. Photonics 2023, 10, 1047. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Catela, M.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Solar-Pumped Dual-Rod Ce:Nd:YAG Laser with 58 W Continuous-Wave Output Power and 5.1° Tracking Error Compensation Width. Opt. Express 2023, 31, 40041. [Google Scholar] [CrossRef]
- Olsen, F.O.; Hansen, K.S.; Nielsen, J.S. Multibeam Fiber Laser Cutting. J. Laser Appl. 2009, 21, 133–138. [Google Scholar] [CrossRef]
- Eifel, S.; Holtkamp, J. Multi-Beam Technology Boosts Cost Efficiency. Available online: https://www.laserfocusworld.com/industrial-laser-solutions/article/14216434/multibeam-technology-boosts-cost-efficiency (accessed on 10 February 2023).
- Strite, T.; Gusenko, A.; Grupp, M.; Hoult, T. Multiple Beam Fibre Lasers Used for Material Processing. Biul. Inst. Spaw. 2016, 60, 30–33. [Google Scholar] [CrossRef]
- Gillner, A.; Finger, J.; Gretzki, P.; Niessen, M.; Bartels, T.; Reininghaus, M. High Power Laser Processing with Ultrafast and Multi-Parallel Beams. J. Laser Micro/Nanoeng. 2019, 14, 129–137. [Google Scholar] [CrossRef]
- Thibault, F. Multibeam Laser Marking: The Individual Traceability Enabler. Available online: https://www.laserfocusworld.com/laser-processing/article/14270572/laser-marking-the-individual-traceability-enabler (accessed on 10 February 2023).
- Duocastella, M.; Arnold, C.B. Bessel and Annular Beams for Materials Processing. Laser Photon Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Koechner, W. Solid-State Laser Engineering, 5th ed.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1, ISBN 978-3-662-14221-9. [Google Scholar]
- Costa, H.; Liang, D.; Almeida, J.; Catela, M.; Garcia, D.; Tibúrcio, B.D.; Vistas, C.R. Seven-Grooved-Ce:Nd:YAG-Rod Solar Laser Pumping Approach with 34.5 W/m2 TEM00-Mode Collection Efficiency. J. Photonics Energy 2023, 13, 048001. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Guillot, E.; Abdel-Hadi, Y. A 40 W Cw Nd:YAG Solar Laser Pumped through a Heliostat: A Parabolic Mirror System. Laser Phys. 2013, 23, 065801. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Almeida, J.; Tibúrcio, B.D.; Garcia, D.; Catela, M.; Costa, H.; Guillot, E. Ce:Nd:YAG Side-Pumped Solar Laser. J. Photonics Energy 2021, 11, 018001. [Google Scholar] [CrossRef]
- Xie, W.T.; Dai, Y.J.; Wang, R.Z.; Sumathy, K. Concentrated Solar Energy Applications Using Fresnel Lenses: A Review. Renew. Sustain. Energy Rev. 2011, 15, 2588–2606. [Google Scholar] [CrossRef]
- Bernardes, P.H.; Liang, D. Solid-State Laser Pumping by Light Guides. Appl. Opt. 2006, 45, 3811. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Garcia, D.; Tibúrcio, B.D.; Costa, H.; Catela, M.; Guillot, E.; Vistas, C.R. 40 W Continuous Wave Ce:Nd:YAG Solar Laser through a Fused Silica Light Guide. Energies 2022, 15, 3998. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Garcia, D.; Catela, M.; Tibúrcio, B.D.; Costa, H.; Guillot, E.; Almeida, J. Uniform and Non-Uniform Pumping Effect on Ce:Nd:YAG Side-Pumped Solar Laser Output Performance. Energies 2022, 15, 3577. [Google Scholar] [CrossRef]
- Garcia, D.; Liang, D.; Vistas, C.R.; Costa, H.; Catela, M.; Tibúrcio, B.D.; Almeida, J. Ce:Nd:YAG Solar Laser with 4.5% Solar-to-Laser Conversion Efficiency. Energies 2022, 15, 5292. [Google Scholar] [CrossRef]
- Tai, Y.; Zheng, G.; Wang, H.; Bai, J. Near-Infrared Quantum Cutting of Ce3+–Nd3+ Co-Doped Y3Al5O12 Crystal for Crystalline Silicon Solar Cells. J. Photochem. Photobiol. A Chem. 2015, 303, 80–85. [Google Scholar] [CrossRef]
- ASTM G173-03 (2012); Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2020.
- Weksler, M.; Shwartz, J. Solar-Pumped Solid-State Lasers. IEEE J. Quantum Electron. 1988, 24, 1222–1228. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.; Li, J.; He, D.; Zhang, H. 32.1 W/m2 Continuous Wave Solar-Pumped Laser with a Bonding Nd:YAG/YAG Rod and a Fresnel Lens. Opt. Laser Technol. 2018, 107, 158–161. [Google Scholar] [CrossRef]
- Samuel, P.; Yanagitani, T.; Yagi, H.; Nakao, H.; Ueda, K.I.; Babu, S.M. Efficient Energy Transfer between Ce3+ and Nd3+ in Cerium Codoped Nd:YAG Laser Quality Transparent Ceramics. J. Alloys Compd. 2010, 507, 475–478. [Google Scholar] [CrossRef]
- Prahl, S. Nd:YAG—Nd:Y3Al5O12. Available online: https://omlc.org/spectra/lasermedia/html/052.html (accessed on 26 July 2024).
- Sherniyozov, A.; Payziyev, S.; Begimqulov, S. Enhancing Solar Laser Performance through Multirod Configurations. J. Photonics Energy 2024, 14, 024501. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.; Yang, S.; Wang, Y.; Ke, J.; Gao, F.; Zhang, H. Low Threshold and High Efficiency Solar-Pumped Laser with Fresnel Lens and a Grooved Nd:YAG Rod. In High-Power Lasers and Applications VIII; Li, R., Singh, U.N., Walter, R.F., Eds.; SPIE: Beijing, China, 2016; Volume 10016, p. 1001609. [Google Scholar]
- Costa, H.; Liang, D.; Almeida, J.; Catela, M.; Garcia, D.; Tibúrcio, B.D.; Vistas, C.R. Seven-Rod Pumping Concept for Highly Stable Solar Laser Emission. Energies 2022, 15, 9140. [Google Scholar] [CrossRef]
- Ciofini, M.; Favilla, E.; Lapucci, A.; Sani, E. Propagation Parameters of the Beam Extracted from a Diode Pumped Nd:YAG Ceramic Slab Laser with a Hybrid Stable–Unstable Resonator. Opt. Laser Technol. 2007, 39, 1380–1388. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J. Design of Ultrahigh Brightness Solar-Pumped Disk Laser. Appl. Opt. 2012, 51, 6382. [Google Scholar] [CrossRef]
Parameter | Multimode Regime | TEM00-Mode Regime | ||
---|---|---|---|---|
Liang et al. (2022) [15] | Cai et al. (2023) [16] | Liang et al. (2017) [17] | Liang et al. (2024) [18] | |
Solar concentrator | Parabolic mirror | Fresnel lens | Parabolic mirror | Fresnel lens |
Effective collection area (m2) | 0.40 | 0.694 | 1.18 | 0.085 |
Type of rod | Conventional | Grooved | Conventional | Conventional |
Rod material | Ce:Nd:YAG | Ce:Nd:YAG/YAG bonded | Nd:YAG | Ce:Nd:YAG |
Number of rods | 3 | 1 | 1 | 1 |
Configuration | End-side pump | End-side pump | End-side pump | End-side pump |
Total laser power (W) | 16.50 | 26.93 | 9.30 | 1.41 |
Collection efficiency (W/m2) | 41.25 | 38.81 | 7.88 | 16.49 |
Solar-to-laser power conversion efficiency (%) | 4.64 | 3.88 | 0.79 | 2.06 |
Parameter | Experimental Work | Numerical Work | |
---|---|---|---|
Liang et al. (2024) [18] | Costa et al. (2023) [28] | Present Scheme | |
Type of rod | Conventional | Grooved | Conventional |
Number of rods | 1 | 7 | 7 |
Configuration | End-side pump | End-side pump | Side pump |
Number of Fresnel lenses | 1 | 7 | 12 |
Effective collection area (m2) | 0.0855 | 5.0 | 6.0 |
Solar irradiance (W/m2) | 800 | 950 | 950 |
Total TEM00-mode laser power (W) | 1.41 | 172.59 (=22.89 + 6 × 24.95) | 212.39 (=16.79 + 6 × 32.60) |
Solar-to-laser power conversion efficiency (%) | 2.06 | 3.63 | 3.73 |
, | 1.08, 1.08 | 1 × (1.69, 1.00), 6 × (1.04, 1.00) | 1 × (1.99, 1.00), 6 × (1.00, 1.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, H.; Liang, D.; Matos, A.; Almeida, J. Multi-Fresnel-Lens Pumping Approach for Simultaneous Emission of Seven TEM00-Mode Beams with 3.73% Conversion Efficiency. Photonics 2024, 11, 889. https://doi.org/10.3390/photonics11090889
Costa H, Liang D, Matos A, Almeida J. Multi-Fresnel-Lens Pumping Approach for Simultaneous Emission of Seven TEM00-Mode Beams with 3.73% Conversion Efficiency. Photonics. 2024; 11(9):889. https://doi.org/10.3390/photonics11090889
Chicago/Turabian StyleCosta, Hugo, Dawei Liang, Ana Matos, and Joana Almeida. 2024. "Multi-Fresnel-Lens Pumping Approach for Simultaneous Emission of Seven TEM00-Mode Beams with 3.73% Conversion Efficiency" Photonics 11, no. 9: 889. https://doi.org/10.3390/photonics11090889
APA StyleCosta, H., Liang, D., Matos, A., & Almeida, J. (2024). Multi-Fresnel-Lens Pumping Approach for Simultaneous Emission of Seven TEM00-Mode Beams with 3.73% Conversion Efficiency. Photonics, 11(9), 889. https://doi.org/10.3390/photonics11090889