Iron-Modified Nano-TiO2: Comprehensive Characterization for Enhanced Photocatalytic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Modification Process
2.2.2. Diffuse Reflectance Spectroscopy (DRS)
2.2.3. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)
2.2.4. X-ray Diffraction (XRD)
2.2.5. Photocatalytic Efficiency Assessment
3. Results
3.1. Diffuse Reflectance Spectroscopy (DRS)
3.2. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)
3.3. X-ray Diffraction (XRD)
3.4. Photocatalytic Efficiency Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lale, E.; Uyguner-Demirel, C.S.; Bekbolet, M. Visible Light Photocatalytic Response of Fe Doped TiO2: Inactivation of Escherichia Coli. J. Photochem. Photobiol. A Chem. 2024, 456, 115836. [Google Scholar] [CrossRef]
- Segundo, I.R.; Freitas, E.; Branco, V.T.F.C.; Landi, S.; Costa, M.F.; Carneiro, J.O. Review and Analysis of Advances in Functionalized, Smart, and Multifunctional Asphalt Mixtures. Renew. Sustain. Energy Rev. 2021, 151, 111552. [Google Scholar] [CrossRef]
- Fang, M.; Peng, L.; Li, Y.; Cheng, Y.; Zhan, L. Evaluation Test of NO Degradation by Nano-TiO2 Coatings on Road Pavements under Natural Light. Coatings 2022, 12, 1200. [Google Scholar] [CrossRef]
- Bersch, J.D.; Picanço Casarin, R.; Maia, J.; Masuero, A.B.; Dal Molin, D.C.C. TiO2-Based Mortars for Rendering Building Envelopes: A Review of the Surface Finishing for Sustainability. Sustainability 2023, 15, 16920. [Google Scholar] [CrossRef]
- Nyamukamba, P.; Okoh, O.; Mungondori, H.; Taziwa, R.; Zinya, S. Synthetic Methods for Titanium Dioxide Nanoparticles: A Review. In Titanium Dioxide—Material for a Sustainable Environment; InTech: Houston, TX, USA, 2018. [Google Scholar]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, M.; Senthil, T.S.; Senthilkumar, N.; Kang, M. Solar-Light-Induced Photocatalyst Based on Bi–B Co-Doped TiO2 Prepared via Co-Precipitation Method. J. Mater. Sci. Mater. Electron. 2022, 33, 16550–16563. [Google Scholar] [CrossRef]
- Carneiro, J.O.; Azevedo, S.; Fernandes, F.; Freitas, E.; Pereira, M.; Tavares, C.J.; Lanceros-Méndez, S.; Teixeira, V. Synthesis of Iron-Doped TiO2 Nanoparticles by Ball-Milling Process: The Influence of Process Parameters on the Structural, Optical, Magnetic, and Photocatalytic Properties. J. Mater. Sci. 2014, 49, 7476–7488. [Google Scholar] [CrossRef]
- Crişan, M.; Drăgan, N.; Crişan, D.; Ianculescu, A.; Niţoi, I.; Oancea, P.; Todan, L.; Stan, C.; Stănică, N. The Effects of Fe, Co and Ni Dopants on TiO2 Structure of Sol–Gel Nanopowders Used as Photocatalysts for Environmental Protection: A Comparative Study. Ceram. Int. 2016, 42, 3088–3095. [Google Scholar] [CrossRef]
- Matias, M.L.; Pimentel, A.; Reis-Machado, A.S.; Rodrigues, J.; Deuermeier, J.; Fortunato, E.; Martins, R.; Nunes, D. Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification. Nanomaterials 2022, 12, 1005. [Google Scholar] [CrossRef]
- Ali, T.; Tripathi, P.; Azam, A.; Raza, W.; Ahmed, A.S.; Ahmed, A.; Muneer, M. Photocatalytic Performance of Fe-Doped TiO2 Nanoparticles under Visible-Light Irradiation. Mater. Res. Express 2017, 4, 015022. [Google Scholar] [CrossRef]
- Pongwan, P.; Inceesungvorn, B.; Wetchakun, K.; Phanichphant, S.; Wetchakun, N. Highly Efficient Visible-Light-Induced Photocatalytic Activity of Fe-Doped TiO2 Nanoparticles. Eng. J. 2012, 16, 143–152. [Google Scholar] [CrossRef]
- Ambrus, Z.; Balázs, N.; Alapi, T.; Wittmann, G.; Sipos, P.; Dombi, A.; Mogyorósi, K. Synthesis, Structure and Photocatalytic Properties of Fe(III)-Doped TiO2 Prepared from TiCl3. Appl. Catal. B Environ. 2008, 81, 27–37. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Lestari, N.D.; Cinjana, I.R.; Annur, S.; Natsir, T.A.; Mudasir, M. Doping TiO2 with Fe from Iron Rusty Waste for Enhancing Its Activity under Visible Light in the Congo Red Dye Photodegradation. J. Eng. Appl. Sci. 2023, 70, 9. [Google Scholar] [CrossRef]
- Afonso, C.; Lima, O.; Segundo, I.R.; Landi, S.; Margalho, É.; Homem, N.; Pereira, M.; Costa, M.F.M.; Freitas, E.; Carneiro, J. Effect of Iron-Doping on the Structure and Photocatalytic Activity of TiO2 Nanoparticles. Catalysts 2022, 13, 58. [Google Scholar] [CrossRef]
- Li, Z.; Shen, W.; He, W.; Zu, X. Effect of Fe-Doped TiO2 Nanoparticle Derived from Modified Hydrothermal Process on the Photocatalytic Degradation Performance on Methylene Blue. J. Hazard. Mater. 2008, 155, 590–594. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. The Advancements in Sol–Gel Method of Doped-TiO2 Photocatalysts. Appl. Catal. A Gen. 2010, 375, 1–11. [Google Scholar] [CrossRef]
- Letifi, H.; Dridi, D.; Litaiem, Y.; Ammar, S.; Dimassi, W.; Chtourou, R. High Efficient and Cost Effective Titanium Doped Tin Dioxide Based Photocatalysts Synthesized via Co-Precipitation Approach. Catalysts 2021, 11, 803. [Google Scholar] [CrossRef]
- Mahendran, V.; Gogate, P.R. Ultrasound-Assisted Synthesis of Fe-Doped TiO2 Catalyst for Photocatalytic Oxidation Application. Int. J. Environ. Res. 2021, 15, 1071–1084. [Google Scholar] [CrossRef]
- Ma, J.; He, H.; Liu, F. Effect of Fe on the Photocatalytic Removal of NO over Visible Light Responsive Fe/TiO2 Catalysts. Appl. Catal. B Environ. 2015, 179, 21–28. [Google Scholar] [CrossRef]
- Lucas, S.S.; Ferreira, V.M.; de Aguiar, J.L.B. Incorporation of Titanium Dioxide Nanoparticles in Mortars—Influence of Microstructure in the Hardened State Properties and Photocatalytic Activity. Cem. Concr. Res. 2013, 43, 112–120. [Google Scholar] [CrossRef]
- Díaz, D.D.; Miranda, P.O.; Padrón, J.I.; Martín, V.S. Recent Uses of Iron (III) Chloride in Organic Synthesis. Curr. Org. Chem. 2006, 10, 457–476. [Google Scholar] [CrossRef]
- Jeyachitra, R.; Senthilnathan, V.; Senthil, T.S. Studies on Electrical Behavior of Fe Doped ZnO Nanoparticles Prepared via Co-Precipitation Approach for Photo-Catalytic Application. J. Mater. Sci. Mater. Electron. 2018, 29, 1189–1197. [Google Scholar] [CrossRef]
- Ellouzi, I.; El Hajjaji, S.; Harir, M.; Schmitt-Kopplin, P.; Laânab, L. Coprecipitation Synthesis of Fe-Doped TiO2 from Various Commercial TiO2 for Photocatalytic Reaction. Int. J. Environ. Res. 2020, 14, 605–613. [Google Scholar] [CrossRef]
- Yang, X.; Li, L. Controlled Synthesis of Single-Crystalline α-Fe2O3 Micro/Nanoparticles from the Complex Precursor of FeCl3 and Methyl Orange. Nanotechnology 2010, 21, 355602. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and Misuse of the Kubelka-Munk Function to Obtain the Band Gap Energy from Diffuse Reflectance Measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Spurr, R.A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal. Chem. 1957, 29, 760–762. [Google Scholar] [CrossRef]
- Medina-Ramírez, I.; Liu, J.L.; Hernández-Ramírez, A.; Romo-Bernal, C.; Pedroza-Herrera, G.; Jáuregui-Rincón, J.; Gracia-Pinilla, M.A. Synthesis, Characterization, Photocatalytic Evaluation, and Toxicity Studies of TiO2–Fe3+ Nanocatalyst. J. Mater. Sci. 2014, 49, 5309–5323. [Google Scholar] [CrossRef]
- Hung, W.-C.; Chen, Y.-C.; Chu, H.; Tseng, T.-K. Synthesis and Characterization of TiO2 and Fe/TiO2 Nanoparticles and Their Performance for Photocatalytic Degradation of 1,2-Dichloroethane. Appl. Surf. Sci. 2008, 255, 2205–2213. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J.Y. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B 1998, 102, 10871–10878. [Google Scholar] [CrossRef]
Composition | Crystallite Size (nm) | |
---|---|---|
Anatase | Rutile | |
Nano-TiO2 | 21.13 | 26.39 |
0.1% FeCl3 | 23.57 | 40.07 |
1% FeCl3 | 25.35 | 29.57 |
10% FeCl3 | 23.19 | 27.76 |
Composition | Lattice Parameters (Å) | |||
---|---|---|---|---|
Anatase | Rutile | |||
a | c | a | c | |
Nano-TiO2 | 3.79 | 9.52 | 4.59 | 2.96 |
0.1% FeCl3 | 3.78 | 9.08 | 4.57 | 2.95 |
1% TiO2 | 3.77 | 9.19 | 4.57 | 2.95 |
10% FeCl3 | 3.76 | 9.30 | 4.56 | 2.95 |
Composition | Unit Cell Volume (Å3) | XA | |
---|---|---|---|
Anatase | Rutile | ||
Nano-TiO2 | 136.73 | 62.49 | 73.36 |
0.1% FeCl3 | 129.70 | 61.79 | 74.73 |
1% FeCl3 | 130.68 | 61.62 | 72.71 |
10% FeCl3 | 131.71 | 61.18 | 68.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margalho, É.M.; Lima, O., Jr.; Afonso, C.; Segundo, I.R.; Landi, S., Jr.; Freitas, E.; Costa, M.F.M.; Carneiro, J. Iron-Modified Nano-TiO2: Comprehensive Characterization for Enhanced Photocatalytic Properties. Photonics 2024, 11, 888. https://doi.org/10.3390/photonics11090888
Margalho ÉM, Lima O Jr., Afonso C, Segundo IR, Landi S Jr., Freitas E, Costa MFM, Carneiro J. Iron-Modified Nano-TiO2: Comprehensive Characterization for Enhanced Photocatalytic Properties. Photonics. 2024; 11(9):888. https://doi.org/10.3390/photonics11090888
Chicago/Turabian StyleMargalho, Élida M., Orlando Lima, Jr., Cátia Afonso, Iran Rocha Segundo, Salmon Landi, Jr., Elisabete Freitas, Manuel F. M. Costa, and Joaquim Carneiro. 2024. "Iron-Modified Nano-TiO2: Comprehensive Characterization for Enhanced Photocatalytic Properties" Photonics 11, no. 9: 888. https://doi.org/10.3390/photonics11090888
APA StyleMargalho, É. M., Lima, O., Jr., Afonso, C., Segundo, I. R., Landi, S., Jr., Freitas, E., Costa, M. F. M., & Carneiro, J. (2024). Iron-Modified Nano-TiO2: Comprehensive Characterization for Enhanced Photocatalytic Properties. Photonics, 11(9), 888. https://doi.org/10.3390/photonics11090888