Study on the Influence of Atmospheric Light Intensity Scintillation Effect on Optical Fiber Coupling Efficiency
Abstract
:1. Introduction
2. Analysis of the Influence of Atmospheric Light Intensity Scintillation on Optical Fiber Coupling Efficiency
3. Real-Time Measurement Scheme for Light Intensity Flicker and Fiber Coupling Efficiency
Experiments Based on Real-Time Measurement of Blimp Light Intensity Scintillation and Fiber Coupling Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2019, 34, 134–142. [Google Scholar] [CrossRef]
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE WirelCommun. 2020, 27, 126–132. [Google Scholar] [CrossRef]
- You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Liang, Y.C. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 110301. [Google Scholar] [CrossRef]
- Jahid, A.; Alsharif, M.H.; Hall, T.J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 2022, 200, 103311. [Google Scholar] [CrossRef]
- Magidi, S.; Jabeena, A. Free space optics, channel models and hybrid modulation schemes: A review. Wirel. Pers. Commun. 2021, 119, 2951–2974. [Google Scholar] [CrossRef]
- Wang, G.; Shao, L.Y.; Xiao, D.; Bandyopadhyay, S.; Jiang, J.; Liu, S.; Li, W.; Wang, C.; Yan, Z. Stable and highly efficient free-space optical wireless communication system based on polarization modulation and in-fiber diffraction. J. Light. Technol. 2021, 39, 83–90. [Google Scholar] [CrossRef]
- Luo, H.; Wang, J.; Bu, F.; Ruby, R.; Wu, K.; Guo, Z. Recent progress of air/water cross-boundary communications for underwater sensor networks: A review. IEEE. Sens. J. 2022, 22, 8360–8382. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L.; Young, C.Y. Scintillation model for a satellite communication link at large zenith angles. Opt. Eng. 2000, 39, 3272–3280. [Google Scholar]
- Andrews, L.C.; Phillips, R.L. I–K distribution as a universal propagation model of laser beams in atmospheric turbulence. J. Opt. Soc. Am. A 1985, 2, 160–163. [Google Scholar] [CrossRef]
- Davis, C.A.; Walters, D.L. Atmospheric inner-scale effects on normalized irradiance variance. Appl. Optics. 1994, 33, 8406–8411. [Google Scholar] [CrossRef]
- Al-Habash, M.A.; Andrews, L.C.; Phillips, R.L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 2001, 40, 1554–1562. [Google Scholar] [CrossRef]
- Osborn, J.; Townson, M.J.; Farley, O.J.; Reeves, A.; Calvo, R.M. Adaptive Optics pre-compensated laser uplink to LEO and GEO. Opt. Express. 2021, 29, 6113–6132. [Google Scholar] [CrossRef] [PubMed]
- Tunick, A. Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser path. Opt. Express. 2008, 16, 14645–14654. [Google Scholar] [CrossRef] [PubMed]
- Anguita, J.A.; Neifeld, M.A.; Vasic, B.V. Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link. Appl. Optics. 2007, 46, 6561–6571. [Google Scholar] [CrossRef] [PubMed]
- Bayaki, E.; Schober, R.; Mallik, R.K. Performance analysis of MIMO free-space optical systems in gamma-gamma fading. IEEE Trans. Commun. 2009, 57, 3415–3424. [Google Scholar] [CrossRef]
- Takenaka, H.; Toyoshima, M. Study on the fiber coupling efficiency for ground-to-satellite laser communication links. In Proceedings of the SPIE LASE, San Francisco, CA, USA, 26 February 2010. [Google Scholar]
- Tan, L.; Li, M.; Wu, J.; Ma, J.; Yang, Q. Fiber-coupling efficiency simulation of Gaussian Schell model laser in space-to-ground optical communication link. Opt. Commun. 2015, 349, 112–119. [Google Scholar] [CrossRef]
- Ma, J.; Lu, G.; Yu, S.; Tan, L.; Fu, Y.; Li, F. Fiber coupling efficiency for satellite and space to ground downlinks with pointing errors. Optik 2020, 202, 163558. [Google Scholar] [CrossRef]
- Zhai, C. Turbulence spectrum model and fiber-coupling efficiency in the anisotropic non-Kolmogorov satellite-to-ground downlink. Results Phys. 2021, 29, 104685. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L.; Hopen, C.Y. Aperture averaging of optical scintillations: Power fluctuations and the temporal spectrum. Wave. Random Media. 2000, 10, 53. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, X.; Song, Y.; Wang, J.; Luan, Y.; Li, Y.; Chang, S. Near-surface atmospheric turbulence profile measuring technology based on an airship-mounted laser communication system. Appl. Optics. 2022, 61, 439–445. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Lezhenin, A.A.; Gradov, V.S.; Zaiko, P.O.; Khitrykau, M.A.; Kirichenko, K.E.; Driga, M.B.; Kiselev, A.V.; Russkikh, I.V.; et al. Simulating atmospheric characteristics and daytime astronomical seeing using Weather Research and Forecasting Model. Appl. Sci. 2023, 13, 6354. [Google Scholar] [CrossRef]
- Frehlich, R.; Sharman, R.; Vandenberghe, F.; Yu, W.; Liu, Y.; Knievel, J.; Jumper, G. Estimates of Cn2 from numerical weather prediction model output and comparison with thermosonde data. J. Appl. Meteorol. Clim. 2010, 49, 1742–1755. [Google Scholar] [CrossRef]
Parameters | Indicators | |
---|---|---|
Laser wavelength | Beacon | 790/850 nm |
Communication | 1550/1530 nm | |
Divergence angle | Beacon | 100 μrad |
Communication | 2 mrad | |
Optical aperture | 100 mm | |
Communication rate | 1.25/2.5 Gbps | |
Tracking accuracy | 5 μrad | |
Receiving field of view | 50 mrad | |
Focal length | 300 mm |
Link Distance | Blimp Altitude | Link | Scintillation Index | Coupling Efficiency |
---|---|---|---|---|
3000 m | 1000 m | Air-Ground | 0.09 | 0.53 |
12,000 m | 1000 m | Air-Ground | 0.44 | 0.14 |
12,000 m | 800 m | Air-Ground | 0.50 | 0.09 |
12,000 m | 600 m | Air-Ground | 0.63 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Zhao, X. Study on the Influence of Atmospheric Light Intensity Scintillation Effect on Optical Fiber Coupling Efficiency. Photonics 2024, 11, 884. https://doi.org/10.3390/photonics11090884
Ding X, Zhao X. Study on the Influence of Atmospheric Light Intensity Scintillation Effect on Optical Fiber Coupling Efficiency. Photonics. 2024; 11(9):884. https://doi.org/10.3390/photonics11090884
Chicago/Turabian StyleDing, Xiaoying, and Xin Zhao. 2024. "Study on the Influence of Atmospheric Light Intensity Scintillation Effect on Optical Fiber Coupling Efficiency" Photonics 11, no. 9: 884. https://doi.org/10.3390/photonics11090884
APA StyleDing, X., & Zhao, X. (2024). Study on the Influence of Atmospheric Light Intensity Scintillation Effect on Optical Fiber Coupling Efficiency. Photonics, 11(9), 884. https://doi.org/10.3390/photonics11090884