Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene
Abstract
1. Introduction
2. Experimental Technique
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Landmines, ERW and IED Safety Handbook. Available online: https://www.unmas.org/en/landmines-erw-and-ied-safety-handbook (accessed on 6 September 2024).
- Counterterrorist Detection Techniques of Explosives. Available online: https://www.sciencedirect.com/book/9780444522047/counterterrorist-detection-techniques-of-explosives?via=ihub=#book-info (accessed on 6 September 2024).
- Rodgers, M.O.; Asai, K.; Davis, D.D. Photofragmentation-laser induced fluorescence: A new method for detecting atmospheric trace gases. Appl. Opt. 1980, 19, 3597–3605. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.D.; Singh, J.P.; Yueh, F.Y.; Monts, D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence. Appl. Opt. 1996, 35, 3998–4003. [Google Scholar] [CrossRef] [PubMed]
- Simeonsson, J.B.; Sausa, R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis. Appl. Spectrosc. Rev. 1996, 31, 1–72. [Google Scholar] [CrossRef]
- Swayambunathan, V.; Singh, G.; Sausa, R.C. Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials. Appl. Opt. 1999, 38, 6447–6454. [Google Scholar] [CrossRef] [PubMed]
- Daugey, N.; Shu, J.; Bar, I.; Rosenwaks, S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0-3). Appl. Spectrosc. 1999, 53, 57–64. [Google Scholar] [CrossRef]
- Shu, J.; Bar, I.; Rosenwaks, S. Dinitrobenzene Detection by Use of One-color Laser Photolysis and Laser-Induced Fluorescence of Vibrationally Excited NO. Appl. Opt. 1999, 38, 4705–4710. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Bar, I.; Rosenwaks, S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates. Appl. Phys. B 2000, 71, 665–672. [Google Scholar] [CrossRef]
- Shu, J.; Bar, I.; Rosenwaks, S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators. Appl. Phys. B 2000, 70, 621–625. [Google Scholar] [CrossRef]
- Arusi-Parpar, T.; Heflinger, D.; Lavi, R. Photodissociation Followed by Laser-Induced Fluorescence at Atmospheric Pressure and 24 °C: A Unique Scheme for Remote Detection of Explosives. J. Appl. Opt. 2001, 40, 6677–6681. [Google Scholar] [CrossRef] [PubMed]
- Heflinger, D.; Arusi-Parpar, T.; Ron, Y.; Lavi, R. Application of a unique scheme for remote detection of explosives. Opt. Commun. 2002, 204, 327–331. [Google Scholar] [CrossRef]
- Wynn, C.M.; Palmacci, S.; Kunz, R.R.; Zayhowski, J.J.; Edwards, B.; Rothschild, M. Experimental demonstration of remote optical detection of trace explosives. Proc. SPIE 2008, 6954, 695407–6954078. [Google Scholar]
- Wynn, C.M.; Palmacci, S.; Kunz, R.R.; Rothschild, M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence. Opt. Express. 2010, 18, 5399–5406. [Google Scholar] [CrossRef] [PubMed]
- Wynn, C.M.; Palmacci, S.; Kunz, R.R.; Aernecke, M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence. Opt. Express. 2011, 19, 18671–18677. [Google Scholar] [CrossRef] [PubMed]
- Bobrovnikov, S.M.; Gorlov, E.V.; Zharkov, V.I.; Panchenko, Y.N.; Puchikin, A.V. Dynamics of the laser fragmentation/laser-induced fluorescence process in nitrobenzene vapors. Appl. Opt. 2018, 57, 9381–9387. [Google Scholar] [CrossRef] [PubMed]
- Bobrovnikov, S.M.; Gorlov, E.V.; Zharkov, V.I.; Panchenko, Y.N.; Puchikin, A.V. Two-pulse laser fragmentation/laser-induced fluorescence of nitrobenzene and nitrotoluene vapors. Appl. Opt. 2019, 58, 7497–7502. [Google Scholar] [CrossRef] [PubMed]
- Panchenko, Y.; Puchikin, A.; Yampolskaya, S.; Bobrovnikov, S.; Gorlov, E.; Zharkov, V. Narrowband KrF Laser for Lidar Systems. IEEE J. Quantum Electron. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- Luque, J.; Crosley, D.R. LIFBASE: Database and Spectral Simulation Program (Version 1.5). SRI Int. Rep. MP 99-009 1999. [Google Scholar]
Parameter | Value | |
---|---|---|
Nd:YAG Laser | KrF Laser | |
Radiation wavelength, nm | 266 | 247.867 |
Maximum pulse energy, mJ | 100 | 100 |
Line width, pm | 30 | 5 |
Pulse repetition rate, Hz | 10 | 10 |
Pulse duration (τ0.5), ns | 5 | 30 |
Beam divergence, mrad | <0.5 | 1 |
Output beam size, mm | Ø9 | 18 × 9 |
w266 (mJ/cm2) | w248 (mJ/cm2) | |||
---|---|---|---|---|
8.1 ± 0.5 | 13.0 ± 0.5 | 18.3 ± 0.5 | 23.2 ± 0.5 | |
0 | 1 | 1 | 1 | 1 |
5.1 ± 0.2 | 2.2 ± 2.0 | 2.1 ± 1.6 | 3.3 ± 1.9 | 4.1 ± 2.1 |
10.0 ± 0.2 | 2.9 ± 2.7 | 4.9 ± 3.2 | 5.2 ± 2.7 | 5.9 ± 2.8 |
15.1 ± 0.2 | 7.5 ± 6.5 | 7.3 ± 4.5 | 7.5 ± 3.7 | 9.3 ± 4.1 |
20.0 ± 0.2 | 18.7 ± 14.6 | 17.0 ± 9.5 | 16.0 ± 7.3 | 18.1 ± 7.4 |
25.0 ± 0.2 | 19.3 ± 15.0 | 18.3 ± 10.1 | 20.3 ± 9.1 | 22.2 ± 9.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobrovnikov, S.; Gorlov, E.; Zharkov, V. Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene. Photonics 2024, 11, 862. https://doi.org/10.3390/photonics11090862
Bobrovnikov S, Gorlov E, Zharkov V. Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene. Photonics. 2024; 11(9):862. https://doi.org/10.3390/photonics11090862
Chicago/Turabian StyleBobrovnikov, Sergei, Evgeny Gorlov, and Viktor Zharkov. 2024. "Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene" Photonics 11, no. 9: 862. https://doi.org/10.3390/photonics11090862
APA StyleBobrovnikov, S., Gorlov, E., & Zharkov, V. (2024). Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene. Photonics, 11(9), 862. https://doi.org/10.3390/photonics11090862