Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene
Abstract
:1. Introduction
2. Experimental Technique
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Landmines, ERW and IED Safety Handbook. Available online: https://www.unmas.org/en/landmines-erw-and-ied-safety-handbook (accessed on 6 September 2024).
- Counterterrorist Detection Techniques of Explosives. Available online: https://www.sciencedirect.com/book/9780444522047/counterterrorist-detection-techniques-of-explosives?via=ihub=#book-info (accessed on 6 September 2024).
- Rodgers, M.O.; Asai, K.; Davis, D.D. Photofragmentation-laser induced fluorescence: A new method for detecting atmospheric trace gases. Appl. Opt. 1980, 19, 3597–3605. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.D.; Singh, J.P.; Yueh, F.Y.; Monts, D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence. Appl. Opt. 1996, 35, 3998–4003. [Google Scholar] [CrossRef] [PubMed]
- Simeonsson, J.B.; Sausa, R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis. Appl. Spectrosc. Rev. 1996, 31, 1–72. [Google Scholar] [CrossRef]
- Swayambunathan, V.; Singh, G.; Sausa, R.C. Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials. Appl. Opt. 1999, 38, 6447–6454. [Google Scholar] [CrossRef] [PubMed]
- Daugey, N.; Shu, J.; Bar, I.; Rosenwaks, S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0-3). Appl. Spectrosc. 1999, 53, 57–64. [Google Scholar] [CrossRef]
- Shu, J.; Bar, I.; Rosenwaks, S. Dinitrobenzene Detection by Use of One-color Laser Photolysis and Laser-Induced Fluorescence of Vibrationally Excited NO. Appl. Opt. 1999, 38, 4705–4710. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Bar, I.; Rosenwaks, S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates. Appl. Phys. B 2000, 71, 665–672. [Google Scholar] [CrossRef]
- Shu, J.; Bar, I.; Rosenwaks, S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators. Appl. Phys. B 2000, 70, 621–625. [Google Scholar] [CrossRef]
- Arusi-Parpar, T.; Heflinger, D.; Lavi, R. Photodissociation Followed by Laser-Induced Fluorescence at Atmospheric Pressure and 24 °C: A Unique Scheme for Remote Detection of Explosives. J. Appl. Opt. 2001, 40, 6677–6681. [Google Scholar] [CrossRef] [PubMed]
- Heflinger, D.; Arusi-Parpar, T.; Ron, Y.; Lavi, R. Application of a unique scheme for remote detection of explosives. Opt. Commun. 2002, 204, 327–331. [Google Scholar] [CrossRef]
- Wynn, C.M.; Palmacci, S.; Kunz, R.R.; Zayhowski, J.J.; Edwards, B.; Rothschild, M. Experimental demonstration of remote optical detection of trace explosives. Proc. SPIE 2008, 6954, 695407–6954078. [Google Scholar]
- Wynn, C.M.; Palmacci, S.; Kunz, R.R.; Rothschild, M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence. Opt. Express. 2010, 18, 5399–5406. [Google Scholar] [CrossRef] [PubMed]
- Wynn, C.M.; Palmacci, S.; Kunz, R.R.; Aernecke, M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence. Opt. Express. 2011, 19, 18671–18677. [Google Scholar] [CrossRef] [PubMed]
- Bobrovnikov, S.M.; Gorlov, E.V.; Zharkov, V.I.; Panchenko, Y.N.; Puchikin, A.V. Dynamics of the laser fragmentation/laser-induced fluorescence process in nitrobenzene vapors. Appl. Opt. 2018, 57, 9381–9387. [Google Scholar] [CrossRef] [PubMed]
- Bobrovnikov, S.M.; Gorlov, E.V.; Zharkov, V.I.; Panchenko, Y.N.; Puchikin, A.V. Two-pulse laser fragmentation/laser-induced fluorescence of nitrobenzene and nitrotoluene vapors. Appl. Opt. 2019, 58, 7497–7502. [Google Scholar] [CrossRef] [PubMed]
- Panchenko, Y.; Puchikin, A.; Yampolskaya, S.; Bobrovnikov, S.; Gorlov, E.; Zharkov, V. Narrowband KrF Laser for Lidar Systems. IEEE J. Quantum Electron. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- Luque, J.; Crosley, D.R. LIFBASE: Database and Spectral Simulation Program (Version 1.5). SRI Int. Rep. MP 99-009 1999. [Google Scholar]
Parameter | Value | |
---|---|---|
Nd:YAG Laser | KrF Laser | |
Radiation wavelength, nm | 266 | 247.867 |
Maximum pulse energy, mJ | 100 | 100 |
Line width, pm | 30 | 5 |
Pulse repetition rate, Hz | 10 | 10 |
Pulse duration (τ0.5), ns | 5 | 30 |
Beam divergence, mrad | <0.5 | 1 |
Output beam size, mm | Ø9 | 18 × 9 |
w266 (mJ/cm2) | w248 (mJ/cm2) | |||
---|---|---|---|---|
8.1 ± 0.5 | 13.0 ± 0.5 | 18.3 ± 0.5 | 23.2 ± 0.5 | |
0 | 1 | 1 | 1 | 1 |
5.1 ± 0.2 | 2.2 ± 2.0 | 2.1 ± 1.6 | 3.3 ± 1.9 | 4.1 ± 2.1 |
10.0 ± 0.2 | 2.9 ± 2.7 | 4.9 ± 3.2 | 5.2 ± 2.7 | 5.9 ± 2.8 |
15.1 ± 0.2 | 7.5 ± 6.5 | 7.3 ± 4.5 | 7.5 ± 3.7 | 9.3 ± 4.1 |
20.0 ± 0.2 | 18.7 ± 14.6 | 17.0 ± 9.5 | 16.0 ± 7.3 | 18.1 ± 7.4 |
25.0 ± 0.2 | 19.3 ± 15.0 | 18.3 ± 10.1 | 20.3 ± 9.1 | 22.2 ± 9.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobrovnikov, S.; Gorlov, E.; Zharkov, V. Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene. Photonics 2024, 11, 862. https://doi.org/10.3390/photonics11090862
Bobrovnikov S, Gorlov E, Zharkov V. Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene. Photonics. 2024; 11(9):862. https://doi.org/10.3390/photonics11090862
Chicago/Turabian StyleBobrovnikov, Sergei, Evgeny Gorlov, and Viktor Zharkov. 2024. "Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene" Photonics 11, no. 9: 862. https://doi.org/10.3390/photonics11090862
APA StyleBobrovnikov, S., Gorlov, E., & Zharkov, V. (2024). Double-Pulse Laser Fragmentation/Laser-Induced Fluorescence Method for Remote Detection of Traces of Trinitrotoluene. Photonics, 11(9), 862. https://doi.org/10.3390/photonics11090862