Fabrication of Circular Defects in 2-Dimensional Photonic Crystal Lasers with Convex Edge Structure
Abstract
:1. Introduction
2. Structure Design and Fabrication
3. Optical Measurement and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voas, J.; Kshetri, N.; DeFranco, J.F. Scarcity and global insecurity: The semiconductor shortage. IT Prof. 2021, 23, 78–82. [Google Scholar] [CrossRef]
- Frieske, B.; Stieler, S. The “semiconductor crisis” as a result of the COVID-19 pandemic and impacts on the automotive industry and its supply chains. World Electr. Veh. J. 2022, 13, 189. [Google Scholar] [CrossRef]
- Reinsel, D.; Gantz, J.; Rydning, J. The Digitization of the World from Edge to Core; IDC: Needham, MA, USA, 2018; Available online: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf (accessed on 9 September 2024).
- Neutens, P.; Van Dorpe, P.; De Vlaminck, I.; Lagae, L.; Borghs, G. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nat. Photonics 2009, 3, 283–286. [Google Scholar] [CrossRef]
- Conway, J.A.; Sahni, S.; Szkopek, T. Plasmonic interconnects versus conventional interconnects: A comparison of latency, crosstalk and energy costs. Opt. Express 2007, 15, 4474–4484. [Google Scholar] [CrossRef] [PubMed]
- Zia, R.; Schuller, J.A.; Chandran, A.; Brongersma, M.L. Plasmonics: The next chip-scale technology. Mater. Today 2006, 9, 20–27. [Google Scholar] [CrossRef]
- Chen, G.; Chen, H.; Haurylau, M.; Nelson, N.; Fauchet, P.M.; Friedman, E.G.; Albonesi, D. Predictions of CMOS compatible on-chip optical interconnect. In Proceedings of the SLIP ’05, San Francisco, CA, USA, 2–3 April 2005; pp. 13–20. [Google Scholar] [CrossRef]
- O’Connor, I. Optical solutions for system-level interconnect. In Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (SLIP ‘04), Paris, France, 14–15 February 2004; Association for Computing Machinery: New York, NY, USA, 2004; pp. 79–88. [Google Scholar] [CrossRef]
- Xue, J.; Garg, A.; Ciftcioglu, B.; Hu, J.; Wang, S.; Savidis, I.; Jain, M.; Berman, R.; Liu, P.; Huang, M.; et al. An intra-chip free-space optical interconnect. SIGARCH Comput. Archit. News 2010, 38, 94–105. [Google Scholar] [CrossRef]
- Roelkens, G.; Liu, L.; Liang, D.; Jones, R.; Fang, A.; Koch, B.; Bowers, J. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev. 2010, 4, 751–779. [Google Scholar] [CrossRef]
- Wu, X.; Xu, J.; Ye, Y.; Wang, X.; Nikdast, M.; Wang, Z.; Wang, Z. An inter/intra-chip optical network for manycore processors. IEEE Trans. Very Large Scale Integr. Syst. 2015, 23, 678–691. [Google Scholar] [CrossRef]
- Xiong, Y.; Ye, H.; Umeda, T.; Mizoguchi, S.; Morifuji, M.; Kajii, H.; Maruta, A.; Kondow, M. Photonic crystal circular defect (CirD) laser. Photonics 2019, 6, 54. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149. [Google Scholar] [CrossRef]
- Akahane, Y.; Asano, T.; Song, B.S.; Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 2003, 425, 944–947. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 2000, 289, 604–606. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chen, M.; Xiao, S. Wide-angle polarization selectivity based on anomalous defect mode in photonic crystal containing hyperbolic metamaterials. Opt. Lett. 2022, 47, 2153–2156. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Liu, T.; Xiao, S. Polarization-sensitive photonic bandgaps in hybrid one-dimensional photonic crystals composed of all-dielectric elliptical metamaterials and isotropic dielectrics. Appl. Opt. 2023, 62, 706–713. [Google Scholar] [CrossRef]
- Altug, H.; Englund, D.; Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys 2006, 2, 484–488. [Google Scholar] [CrossRef]
- Lončar, M.; Scherer, A.; Qiu, Y. Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 2003, 82, 4648–4650. [Google Scholar] [CrossRef]
- Noda, S.; Yokoyama, M.; Imada, M.; Chutinan, A.; Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 2001, 293, 1123–1125. [Google Scholar] [CrossRef]
- Schulz, S.A.; Upham, J.; O’Faolain, L.; Boyd, R.W. Photonic crystal slow light waveguides in a kagome lattice. Opt. Lett. 2017, 42, 3243–3246. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Noori, M. Ultra-slow light with high NDBP achieved in a modified W1 photonic crystal waveguide with coupled cavities. Opt. Commun. 2018, 424, 37–43. [Google Scholar] [CrossRef]
- Matsubara, H.; Yoshimoto, S.; Saito, H.; Jianglin, Y.; Tanaka, Y.; Noda, S. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science 2008, 319, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Park, H.G.; Kim, S.H.; Kwon, S.H.; Ju, Y.G.; Yang, J.K.; Baek, J.H.; Kim, S.B.; Lee, Y.H. Electrically driven single-cell photonic crystal laser. Science 2004, 305, 1444–1447. [Google Scholar] [CrossRef] [PubMed]
- Ellis, B.; Mayer, M.A.; Shambat, G.; Sarmiento, T.; Harris, J.; Haller, E.E.; Vučković, J. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photon 2011, 5, 297–300. [Google Scholar] [CrossRef]
- Crosnier, G.; Sanchez, D.; Bouchoule, S.; Monnier, P.; Beaudoin, G.; Sagnes, I.; Raj, R.; Raineri, F. Hybrid indium phosphide-on-silicon nanolaser diode. Nat. Photon 2017, 11, 297–300. [Google Scholar] [CrossRef]
- Matsuo, S.; Shinya, A.; Kakitsuka, T.; Nozaki, K.; Segawa, T.; Sato, T.; Kawaguchi, Y.; Notomi, M. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat. Photon 2010, 4, 648–654. [Google Scholar] [CrossRef]
- Takeda, K.; Sato, T.; Shinya, A.; Nozaki, K.; Kobayashi, W.; Taniyama, H.; Notomi, M.; Hasebe, K.; Kakitsuka, T.; Matsuo, S. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat. Photon 2013, 7, 569–575. [Google Scholar] [CrossRef]
- Kuramochi, E.; Nozaki, K.; Shinya, A.; Takeda, K.; Sato, T.; Matsuo, S.; Taniyama, H.; Sumikura, H.; Notomi, M. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat. Photon 2014, 8, 474–481. [Google Scholar] [CrossRef]
- Matsuo, S.; Takeda, K. λ-scale embedded active region photonic crystal (LEAP) lasers for optical interconnects. Photonics 2019, 6, 82. [Google Scholar] [CrossRef]
- Dimopoulos, E.; Xiong, M.; Sakanas, A.; Marchevsky, A.; Dong, G.; Yu, Y.; Semenova, E.; Mørk, J.; Yvind, K. Experimental demonstration of a nanolaser with a sub-μA threshold current. Optica 2023, 10, 973–976. [Google Scholar] [CrossRef]
- Morifuji, M.; Nakaya, Y.; Mitamura, T.; Kondow, M. Novel design of current driven photonic crystal laser diode. IEEE Photonics Technol. Lett. 2009, 21, 513–515. [Google Scholar] [CrossRef]
- Kondow, M.; Kawano, T.; Momose, H. Selective oxidation of AlGaAs for photonic crystal laser. Jpn. J. Appl. Phys. 2009, 48, 050202. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Morifuji, M.; Kajii, H.; Kondow, M. Theoretical investigation on communication bandwidth of an orthogonal symmetry-based photonic crystal waveguide for wavelength division multiplexing. Photonics Nanostruct.-Fundam. Appl. 2021, 43, 100892. [Google Scholar] [CrossRef]
- Zuo, R.; Hirata, S.; Aomori, S.; Morita, M.; Ye, H.; Kajii, H.; Morifuji, M.; Maruta, A.; Kondow, M. Investigating wavelength bandwidth of orthogonal lattice waveguide for circular defect in two-dimensional photonic crystal (CirD) lasers. Jpn. J. Appl. Phys. 2023, 62, 022002. [Google Scholar] [CrossRef]
- Okunaga, T.; Nozue, T.; Xiong, Y.; Kajii, H.; Morifuji, M.; Tatebayashi, J.; Fujiwara, Y.; Nishihashi, T.; Kondow, M. Evaluations of Selective Dry Etching of GaAs Core Layer having Embedded InAs Quantum Dots Using Optical Measurements towards Photonic Crystal Laser Fabrication. In Proceedings of the 2020 27th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Tokyo, Japan, 4 September 2020; pp. 93–96. [Google Scholar] [CrossRef]
- Muto, H.; Kato, R.; Zuo, R.; Ye, H.; Kajii, H.; Morifuji, M.; Yagi, T.; Maruta, A.; Kondow, M. High-Precision Selective Dry Etching of the GaAs Core Layer having Embedded InAs Quantum Dots Layers towards Photonic Crystal Laser. In Proceedings of the 16th Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR 2024), Incheon, Republic of Korea, 7 August 2024. [Google Scholar]
- Hayashi, F.; Muto, H.; Kato, R.; Zuo, R.; Ye, H.; Kajii, H.; Morifuji, M.; Yagi, T.; Maruta, A.; Arai, M.; et al. Fabrication of InAs quantum dot embedded GaAs core layer limited within the CirD cavity for photonic crystal laser. In Proceedings of the 43rd Electronic Materials Symposium, Nara, Japan, 3 October 2024. [Google Scholar]
- Adachi, Y.; Sada, I.; Morifuji, M.; Kajii, H.; Maruta, A.; Kondow, M. Improvement of Output Extraction Efficiency by Optimizing Edge Structure of Circular Defect in Photonic Crystal Laser. Phys. Status Solidi 2024, 221, 2300579. [Google Scholar] [CrossRef]
- Adachi, Y.; Xiong, Y.; Ye, H.; Zuo, R.; Morita, M.; Kaichi, K.; Kinoshita, R.; Morifuji, M.; Maruta, A.; Kajii, H.; et al. Advanced dry etching of GaAs/AlGaAs multilayer wafer with InAs quantum dot for circular defect in photonic crystal laser. IEICE Electron. Express 2023, 20, 20230054. [Google Scholar] [CrossRef]
- Xiong, Y. Theoretical and Experimental Studies on Circularly Defects in Photonic Crystal Lasers (Written in Japanese). Ph.D. Dissertation, Osaka University, Osaka, Japan, 2021. [Google Scholar] [CrossRef]
- Ye, H.; Nishimura, T.; Xiong, Y.; Yamaguchi, T.; Morifuji, M.; Kajii, H.; Kondow, M. Theoretical Analysis on Operation Speed of the Circular Defect in 2D Photonic Crystal (CirD) Laser. Phys. Status Solidi 2021, 218, 2000411. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, R.; Adachi, Y.; Kudo, Y.; Ye, H.; Yagi, T.; Morifuji, M.; Kajii, H.; Maruta, A.; Kondow, M. Fabrication of Circular Defects in 2-Dimensional Photonic Crystal Lasers with Convex Edge Structure. Photonics 2024, 11, 853. https://doi.org/10.3390/photonics11090853
Zuo R, Adachi Y, Kudo Y, Ye H, Yagi T, Morifuji M, Kajii H, Maruta A, Kondow M. Fabrication of Circular Defects in 2-Dimensional Photonic Crystal Lasers with Convex Edge Structure. Photonics. 2024; 11(9):853. https://doi.org/10.3390/photonics11090853
Chicago/Turabian StyleZuo, Rubing, Yuki Adachi, Yuto Kudo, Hanqiao Ye, Tetsuya Yagi, Masato Morifuji, Hirotake Kajii, Akihiro Maruta, and Masahiko Kondow. 2024. "Fabrication of Circular Defects in 2-Dimensional Photonic Crystal Lasers with Convex Edge Structure" Photonics 11, no. 9: 853. https://doi.org/10.3390/photonics11090853
APA StyleZuo, R., Adachi, Y., Kudo, Y., Ye, H., Yagi, T., Morifuji, M., Kajii, H., Maruta, A., & Kondow, M. (2024). Fabrication of Circular Defects in 2-Dimensional Photonic Crystal Lasers with Convex Edge Structure. Photonics, 11(9), 853. https://doi.org/10.3390/photonics11090853