Cross-Correlation Algorithm Based on Speeded-Up Robust Features Parallel Acceleration for Shack–Hartmann Wavefront Sensing
Abstract
:1. Introduction
2. Principles and Methods
2.1. The Cross-Correlation Algorithm Description
2.2. SURF Matching Parallel Acceleration Processing Analysis
2.3. SURF Optimization Scheme
3. Experimental Results and Discussion
3.1. SURF Application Simulation Based on CUDA Acceleration
3.2. Simulation of the Shifts Based between Two Sub-Images
3.3. Simulation of the Shifts Based on SURF Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, C.H.; Zhang, X.J.; Jiang, W.H. Simulation of Hartmann-Shaker wavefront sensing for solar grain structure correlation. Acta Opt. Sin. 2002, 22, 285–289. [Google Scholar]
- Wizinowich, P.; Acton, D.S.; Shelton, C.; Stomski, P.; Gathright, J.; Ho, K.; Lupton, W.; Tsubota, K.; Lai, O.; Max, C.; et al. First light adaptive optics images from the Keck II telescope: A new era of high angular resolution imagery. Publ. Astron. Soc. Pac. 2000, 112, 315–319. [Google Scholar] [CrossRef]
- Booth, M.J. Adaptive optical microscopy: The ongoing quest for a perfect image. Light Sci. Appl. 2014, 3, e165. [Google Scholar] [CrossRef]
- Baum, M.; Hanebeck, U.D. Extended object tracking with random hypersurface models. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 149–159. [Google Scholar] [CrossRef]
- Keller, C.U.; Plymate, C.; Ammons, S.M. Low-cost solar adaptive optics in the infrared. In Innovative Telescopes and Instrumentation for Solar Astrophysics, Proceedings of the Astronomical Telescopes and Instrumentation, Waikoloa, HI, USA, 22–28 August 2002; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 4853, pp. 351–359. [Google Scholar]
- Poyneer, L.A. Scene-based Shack-Hartmann wave-front sensing: Analysis and simulation. Appl. Opt. 2003, 42, 5807–5815. [Google Scholar] [CrossRef] [PubMed]
- Montmerle Bonnefois, A.; Fusco, T.; Meimon, S.; Mugnier, L.; Sauvage, J.F.; Engel, C.; Escolle, C.; Ferrari, M.; Hugot, E.; Liotard, A.; et al. Comparative theoretical and experimental study of a Shack-Hartmann and a Phase Diversity Sensor, for high-precision wavefront sensing dedicated to Space Active Optics. Proc. SPIE 2014, 10563, 105634B. [Google Scholar]
- Rimmele, T.R.; Radick, R.R. Solar Adaptive Optics at the National Solar Observatory. In Adaptive Optical System Technologies; Bonaccini, D., Tyson, R.K., Eds.; Proc. SPIE: Bellingham, WA, USA, 1998; Volume 3353, pp. 72–81. [Google Scholar]
- Poyneer, L.A.; Palmer, D.W.; LaFortune, K.N.; Bauman, B. Experimental results for correlation-based wavefront sensing. In Advanced Wavefront Control: Methods, Devices, and Applications III, Proceedings of the Optics and Photonics, San Diego, CA, USA, 31 July–4 August 2005; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5894, p. 58940N. [Google Scholar]
- Hu, X.Q.; Yu, X.; Zhao, D.Z. Effect of object image structure and noise on the sensing accuracy of correlated Hartmann-Shaker wavefront. Acta Opt. Sin. 2007, 27, 1414–1418. [Google Scholar]
- Sidick, E.; Green, J.J.; Morgan, R.M.; Ohara, C.M.; Redding, D.C. Adaptive cross-correlation algorithm for extended scene Shack-Hartmann wavefront sensing. Opt. Lett. 2008, 33, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Sidick, E. Adaptive periodic-correlation algorithm for extended scene shack-hartmann wavefront sensing. In Proceedings of the Calculational Optical Sensing and Imaging, Toronto, ON, Canada, 10–14 July 2011; Optical Society of America: Washington, DC, USA, 2011; p. CPDP1. [Google Scholar]
- Wang, Y.W. Research on Related Hartmann Wavefront Detection Based on Extended Objects. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Yang, L.L. Research on Wave-Front Detection Technique of Variable Extensibility Object Based on Correlation Hartmann. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Wang, Y.; Chen, X.; Cao, Z.; Zhang, X.; Liu, C. Gradient cross-correlation algorithm for scene-based shack-hartmann wavefront sensing. Opt. Express 2018, 26, 17549. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, Y.; Fang, Z.; Xu, Q.; Yang, H.-b.; Yang, H.-z. Post Processing for Adaptive Optics Imaging Based on Multi-channel Blind Recognition. Acta Photonica Sin. 2020, 49, 0201003. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Computer Vision-ECCV 2006, Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Li, D. Feature Extraction and Object Recognition of Extended Objects. Ph.D. Thesis, Graduate School of Chinese Academy of Sciences, Institute of Optoelectronics Technology, Chengdu, China, 2013. [Google Scholar]
- Niu, T.; Liu, L.; Wu, Y. An image registration algorithm based on CUDA acceleration. Comput. Syst. Appl. 2023, 32, 146–155. [Google Scholar]
- Nakov, O.; Mihaylova, E.; Lazarova, M.; Mladenov, V. Parallel image stitching based on multithreaded processing on GPU. In Proceedings of the 2018 International Conference on Intelligent and Innovative Computing Application (ICONIC), Mon Tresor, Mauritius, 6–7 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Ding, P.; Wang, F.; Gu, D.Y.; Zhou, H.; Gao, Q.; Xiang, X. Research on optimization of SURF algorithm based on embedded CUDA platform. In Proceedings of the 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, 19–23 July 2018; IEEE: New York, NY, USA, 2018; pp. 1351–1355. [Google Scholar]
- Na, Y.; Liao, M.M.; Jung, C. Super-speed up robust features image geometrical registration algorithm. IET Image Process. 2016, 10, 848–864. [Google Scholar] [CrossRef]
- Mikolajczyk, K. A comparison of affine region detectors. Int. J. Comput. Vis. 2005, 65, 43–72. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Zernike order | 20 | Reference image size | 48 × 48 pixel |
Incident wavelength | 1064 nm | Pixel size | 8 µm |
Microlens focal length | 8 mm | Sub-aperture resolution | 64 × 64 pixel |
Number of microlenses | 13 × 13 | Entrance pupil diameter | 4 mm |
Traditional SURF | Optimized SURF | ||||
---|---|---|---|---|---|
Resolution Ratio | Point Number | Time (ms) | Point Number | Time (ms) | Precision |
64 × 64 | 58 | 42.34 | 58 | 5.45 | 0.9977 |
48 × 48 | 39 | 28.39 | 39 | 3.77 | 0.9768 |
32 × 32 | 27 | 15.11 | 27 | 1.49 | 1.0000 |
24 × 24 | 16 | 7.83 | 16 | 0.97 | 0.8544 |
Resolution Ratio | Point Number | Traditional SURF (ms) | Optimized SURF (ms) | Precision |
---|---|---|---|---|
64 × 64 | 58 | 49.35 | 4.15 | 0.8453 |
48 × 48 | 39 | 14.68 | 1.66 | 0.7891 |
32 × 32 | 27 | 6.37 | 1.23 | 0.9797 |
24 × 24 | 16 | 0.89 | 0.069 | 0.8905 |
Resolution Ratio | Traditional SURF (ms) | Optimized SURF (ms) | Speed-Up Ratio |
---|---|---|---|
64 × 64 | 198.05 | 21.15 | 9.42 |
48 × 48 | 112.67 | 16.75 | 6.72 |
32 × 32 | 87.47 | 9.33 | 9.37 |
24 × 24 | 56.76 | 6.98 | 8.13 |
Cross-Correlation Algorithm | All Sub-Image Preprocessing | Edge Sub-Image Preprocessing | Un-Preprocessing |
---|---|---|---|
Calculation time/s | 0.163 | 0.110 | 0.097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; Mei, X.; Tan, Y.; Zhang, Z.; Chai, F.; Wu, J.; Wang, S.; Yang, P. Cross-Correlation Algorithm Based on Speeded-Up Robust Features Parallel Acceleration for Shack–Hartmann Wavefront Sensing. Photonics 2024, 11, 844. https://doi.org/10.3390/photonics11090844
Wen L, Mei X, Tan Y, Zhang Z, Chai F, Wu J, Wang S, Yang P. Cross-Correlation Algorithm Based on Speeded-Up Robust Features Parallel Acceleration for Shack–Hartmann Wavefront Sensing. Photonics. 2024; 11(9):844. https://doi.org/10.3390/photonics11090844
Chicago/Turabian StyleWen, Linxiong, Xiaohan Mei, Yi Tan, Zhiyun Zhang, Fangfang Chai, Jiayao Wu, Shuai Wang, and Ping Yang. 2024. "Cross-Correlation Algorithm Based on Speeded-Up Robust Features Parallel Acceleration for Shack–Hartmann Wavefront Sensing" Photonics 11, no. 9: 844. https://doi.org/10.3390/photonics11090844
APA StyleWen, L., Mei, X., Tan, Y., Zhang, Z., Chai, F., Wu, J., Wang, S., & Yang, P. (2024). Cross-Correlation Algorithm Based on Speeded-Up Robust Features Parallel Acceleration for Shack–Hartmann Wavefront Sensing. Photonics, 11(9), 844. https://doi.org/10.3390/photonics11090844