Nonlinear Dynamics of Silicon-Based Epitaxial Quantum Dot Lasers under Optical Injection
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, F.Y.; Tu, S.Y.; Huang, C.C.; Chang, S.M. Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 604–611. [Google Scholar] [CrossRef]
- Ohtsubo, J. Feedback induced instability and chaos in semiconductor lasers and their applications. Opt. Rev. 1999, 6, 1–15. [Google Scholar] [CrossRef]
- Abarbanel, H.D.I.; Kennel, M.B.; Illing, L.; Tang, S.; Chen, H.F.; Liu, J.M. Synchronization and communication using semiconductor lasers with optoelectronic feedback. IEEE J. Quantum Electron. 2001, 37, 1301–1311. [Google Scholar] [CrossRef]
- Jiang, N.; Xue, C.P.; Lv, Y.X.; Qiu, K. Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers. Nonlinear Dyn. 2016, 86, 1937–1949. [Google Scholar] [CrossRef]
- Chang, D.; Zhong, Z.Q.; Valle, A.; Jin, W.; Jiang, S.; Tang, J.M.; Hong, Y.H. Microwave photonic signal generation in an optically injected discrete mode semiconductor laser. Photonics 2022, 9, 171. [Google Scholar] [CrossRef]
- Cui, C.; Fu, X.; Chan, S.C. Double-locked semiconductor laser for radio-over-fiber uplink transmission. Opt. Lett. 2009, 34, 3821–3823. [Google Scholar] [CrossRef]
- Romain, M.N.; Guy, V.; Jan, D.; Guy, V.S. Reducing the phase sensitivity of laser-based optical reservoir computing systems. Opt. Express 2016, 24, 1238–1252. [Google Scholar]
- Kawaguchi, Y.; Okuma, T.; Kanno, K.; Uchida, A. Entropy rate of chaos in an optically injected semiconductor laser for physical random number generation. Opt. Express 2021, 29, 2442–2457. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, B.; Chen, G.; Guo, L.; Lu, D.; Zhao, L.; Wang, W. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep. 2017, 7, 45900. [Google Scholar] [CrossRef] [PubMed]
- Bimberg, D.; Pohl, U.W. Quantum dots: Promises and accomplishments. Mater. Today 2011, 14, 388–397. [Google Scholar] [CrossRef]
- Liu, A.Y.; Komljenovic, T.; Davenport, M.L.; Gossard, A.C.; Bowers, J.E. Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express 2017, 25, 9535–9543. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.Y.; Huang, H.M.; Zhou, Y.G.; Zhao, S.Y.; Ding, S.H.; Wang, C.; Yao, Y.; Xu, X.C.; Grillot, F.; Duan, J.N. Reflection sensitivity of dual-state quantum dot lasers. Photonics Res. 2023, 11, 1713–1722. [Google Scholar] [CrossRef]
- Nishi, K.; Takemasa, K.; Sugawara, M.; Arakawa, Y. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Duan, J.N.; Zhou, Y.; Dong, B.Z.; Huang, H.M.; Norman, J.C.; Jung, D.; Zhang, Z.; Wang, C.; Bowers, J.E.; Grillot, F. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett. 2020, 45, 4887–4890. [Google Scholar] [CrossRef] [PubMed]
- Ukhanov, A.A.; Stintz, A.; Eliseev, P.G.; Malloy, K.J. Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers. Appl. Phys. Lett. 2004, 84, 1058–1060. [Google Scholar] [CrossRef]
- Ukhanov, A.A.; Wang, R.H.; Rotter, T.J.; Stintz, A.; Lester, L.F.; Eliseev, P.G.; Malloy, K.J. Orientation dependence of the optical properties in InAs quantum-dash lasers on InP. Appl. Phys. Lett. 2002, 81, 981–983. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Zhang, Z.; Wan, Y.; Liu, S.; Shang, C.; Herrick, R.W.; Chow, W.W.; Gossard, A.C.; Bowers, J.E. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 2019, 55, 1–11. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Xia, G.Q.; Lin, X.D.; Wang, Q.Q.; Wang, H.; Jiang, C.; Chen, H.; Wu, Z.M. Experimental investigation on the mode characteristics of an excited-state quantum dot laser under concave mirror optical feedback. Photonics 2023, 10, 166. [Google Scholar] [CrossRef]
- Yang, J.; Tang, M.; Chen, S.; Liu, H. From past to future: On-chip laser sources for photonic integrated circuits. Light Sci. Appl. 2023, 12, 16. [Google Scholar] [CrossRef]
- Tang, M.C.; Park, J.; Wang, Z.C.; Chen, S.; Jurczak, P.; Seeds, A.; Liu, H.Y. Integration of III-V lasers on Si for Si photonics. Prog. Quantum Electron. 2019, 66, 1–18. [Google Scholar] [CrossRef]
- Wan, Y.T.; Xiang, C.; Guo, J.; Koscica, R.; Kennedy, M.J.; Selvidge, J.; Zhang, Z.; Chang, L.; Xie, W.Q.; Huang, D.; et al. High speed evanescent quantum-dot lasers on Si. Laser Photonics Rev. 2021, 15, 2100057. [Google Scholar] [CrossRef]
- Wei, W.Q.; Huang, J.Z.; Ji, Z.T.; Han, D.; Yang, B.; Chen, J.J.; Qin, J.L.; Cui, Y.O.; Wang, Z.H.; Wang, T.; et al. Reliable InAs quantum dot lasers grown on patterned Si (001) substrate with embedded hollow structures assisted thermal stress relaxation. J. Phys. D Appl. Phys. 2022, 55, 40. [Google Scholar] [CrossRef]
- Liu, A.Y.; Chong, Z.; Norman, J.; Snyder, A.; Lubyshev, D.; Fastenau, J.M.; Liu, A.W.K.; Gossard, A.C.; Bowers, J.E. High performance continuous wave 1.3 µm quantum dot lasers on silicon. Appl. Phys. Lett. 2014, 104, 041104. [Google Scholar] [CrossRef]
- Liu, A.Y.; Bowers, J. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Wei, W.Q.; Feng, Q.; Guo, J.J.; Guo, M.C.; Wang, J.H.; Wang, Z.H.; Wang, T.; Zhang, J.J. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt. Express 2022, 28, 26555–26563. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Wan, Y.T.; Norman, J.; Collins, N.; MacFarlane, I.; Dumont, M.; Liu, S.T.; Li, Q. Low-Threshold epitaxially grown 1.3-μm InAs quantum dot lasers on patterned (001) Si. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.C.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.; et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Grillot, F. Effect of Shockley-Read-Hall recombination on the static and dynamical characteristics of epitaxial quantum-dot lasers on silicon. Phys. Rev. A 2021, 103, 9. [Google Scholar] [CrossRef]
- Chu, Q.; Zhao, S.Y.; Wang, J.W.; Sun, Y.X.; Yao, Y.; Xu, X.C.; Grillot, F.; Duan, J.N. Optical noise characteristics of injection-locked epitaxial quantum dot lasers on silicon. Opt. Express 2023, 31, 25177–25190. [Google Scholar] [CrossRef]
- Andre, C.; Boeckl, J.; Wilt, D.; Pitera, A.; Lee, M.L.; Fitzgerald, E.; Keyes, B.; Ringel, S. Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates. Appl. Phys. Lett. 2004, 84, 3447–3449. [Google Scholar] [CrossRef]
- Saldutti, M.; Tibaldi, A.; Cappelluti, F.; Gioannini, M. Impact of carrier transport on the performance of QD lasers on silicon: A drift-diffusion approach. Photonics Res. 2020, 8, 1388–1397. [Google Scholar] [CrossRef]
- Duan, J.; Wang, X.G.; Zhou, Y.G.; Wang, C.; Grillot, F. Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J. Quantum Electron. 2018, 54, 1–7. [Google Scholar] [CrossRef]
- Wang, C.; Zhuang, J.P.; Grillot, F.; Chan, S.C. Contribution of off-resonant states to the phase noise of quantum dot lasers. Opt. Express 2016, 24, 29872–29881. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.F.; Wu, Z.M.; Jayaprasath, E.; Yang, W.Y.; Hu, C.X.; Xia, G.Q. Nonlinear dynamics of exclusive excited-state emission quantum dot lasers under optical injection. Photonics 2019, 6, 58. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, R.; Xia, G.-Q.; Zheng, Y.-F.; Wang, Q.-Q.; Wu, Z.-M. Nonlinear Dynamics of Silicon-Based Epitaxial Quantum Dot Lasers under Optical Injection. Photonics 2024, 11, 684. https://doi.org/10.3390/photonics11080684
Fang R, Xia G-Q, Zheng Y-F, Wang Q-Q, Wu Z-M. Nonlinear Dynamics of Silicon-Based Epitaxial Quantum Dot Lasers under Optical Injection. Photonics. 2024; 11(8):684. https://doi.org/10.3390/photonics11080684
Chicago/Turabian StyleFang, Ruilin, Guang-Qiong Xia, Yan-Fei Zheng, Qing-Qing Wang, and Zheng-Mao Wu. 2024. "Nonlinear Dynamics of Silicon-Based Epitaxial Quantum Dot Lasers under Optical Injection" Photonics 11, no. 8: 684. https://doi.org/10.3390/photonics11080684
APA StyleFang, R., Xia, G. -Q., Zheng, Y. -F., Wang, Q. -Q., & Wu, Z. -M. (2024). Nonlinear Dynamics of Silicon-Based Epitaxial Quantum Dot Lasers under Optical Injection. Photonics, 11(8), 684. https://doi.org/10.3390/photonics11080684