Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, L.; Tsujikawa, K.; Hanzawa, N.; Yamamoto, F. Design of optical power delivery network based on power limitation of standard single-mode fiber at a wavelength of 1550 nm. Appl. Opt. 2015, 54, 3720–3724. [Google Scholar] [CrossRef]
- Peña, R.; Algora, C.; Matías, I.R.; López-Amo, M. Fiber-based 205-mW (27% efficiency) power-delivery system for an all-fiber network with optoelectronic sensor units. Appl. Opt. 1999, 38, 2463–2466. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, W.; Chen, M.; Meng, Z. Experimental observation of the competition between stimulated Brillouin scattering, modulation instability and stimulated Raman scattering in long single mode fiber. J. Opt. 2016, 18, 085501. [Google Scholar] [CrossRef]
- Werthen, J.-G. Powering Next Generation Networks by Laser Light over Fiber. In Optical Fiber Communication Conference; OWO3; Optica Publishing Group: Washington, DC, USA, 2008. [Google Scholar]
- Nugent, T.J. Remote Electric Power Delivery via High Power Laser. In Applied Industrial Optics 2019, OSA Technical Digest; Optica Publishing Group: Washington, DC, USA, 2019; paper T3A.4. [Google Scholar]
- Bottger, G.; Dreschmann, M.; Klamouris, C.; Hubner, M.; Roger, M.; Bett, A.W.; Kueng, T.; Becker, J.; Freude, W.; Leuthold, J. An optically powered video camera link. IEEE Photonics Technol. Lett. 2007, 20, 39–41. [Google Scholar] [CrossRef]
- Cardona JD, L.; Lallana, P.C.; Altuna, R.; Fresno-Hernández, A.; Barreiro, X.; Vázquez, C. Optically feeding 1.75 W with 100 m MMF in efficient C-RAN front-hauls with sleep modes. J. Light. Technol. 2021, 39, 7948–7955. [Google Scholar] [CrossRef]
- Helmers, H.; Armbruster, C.; von Ravenstein, M.; Derix, D.; Schöner, C. 6-W optical power link with integrated optical data transmission. IEEE Trans. Power Electron. 2020, 35, 7904–7909. [Google Scholar] [CrossRef]
- Fakidis, J.; Helmers, H.; Haas, H. Simultaneous wireless data and power transfer for a 1-Gb/s GaAs VCSEL and photovoltaic link. IEEE Photonics Technol. Lett. 2020, 32, 1277–1280. [Google Scholar] [CrossRef]
- Soref, R.; De Leonardis, F.; Daligou, G.; Moutanabbir, O. Directed high-energy infrared laser beams for photovoltaic generation of electric power at remote locations. APL Energy 2024, 2, 026101. [Google Scholar] [CrossRef]
- Miyamoto, T. Optical WPT. In Theory and Technology of Wireless Power Transfer; CRC Press: Boca Raton, FL, USA, 2024; pp. 179–245. [Google Scholar]
- Aveta, F.; Basnet, S. Experimental Demonstration of Power over Fiber for Optical Communication System. In Optical Fibers and Sensors for Medical Diagnostics, Treatment, and Environmental Applications XXIV; SPIE: Cergy, France, 2024; Volume 12835, pp. 115–122. [Google Scholar]
- Garkushin, A.A.; Krishtop, V.V.; Storozhev, S.A.; Volkhin, I.L.; Nifontova, E.V.; Urbanovich, E.V.; Kustov, D.A.; Kadochikov, I.V. Digital Twin of the Photoelectric Converter of the Power Transmission System over Optical Fiber. J. Phys. Conf. Ser. 2024, 2701, 012146. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, G.; Huan, Z.; Zhang, Y.; Yuan, G.; Li, Q.; Ding, G.; Lv, Z.; Ni, W.; Shao, Y.; et al. Wireless laser power transmission: Recent progress and future challenges. Space Sol. Power Wirel. Transm. 2024, in press. [CrossRef]
- Jaffe, P.; Nugent, T.; Strassner, B., II; Szazynski, M. Power Beaming. In History, Theory, and Practice; World Scientific Series on Emerging Technologies: London, UK, 2024; Volume 5, p. 420. [Google Scholar]
- Martinek, P.; Prajzler, V. Power over fiber using a large core fiber and laser operating at 976 nm with 10 W power. Opt. Fiber Technol. 2023, 80, 103404. [Google Scholar] [CrossRef]
- Ahnood, A.; Ndabakuranye, J.P.; Li, S.; Kavehei, O.; Prawer, S. Miniature power and data transceiver based on multimodal operation of a single photovoltaic device. Eng. Res. Express 2020, 2, 015036. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, C.; Lv, H.; Zhang, Y.; Zhou, R.; Chu, W.; Lv, P.; Qin, H.; Li, S.; Li, X. Design and Research of Laser Power Converter (LPC) for Passive Optical Fiber Audio Transmission System Terminal. Photonics 2023, 10, 1257. [Google Scholar] [CrossRef]
- Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S.J. Efficiency limits of laser power converters for optical power transfer applications. J. Phys. D Appl. Phys. 2013, 46, 264006. [Google Scholar] [CrossRef]
- Geisz, J.F.; Friedman, D.J.; Steiner, M.A.; France, R.M.; Song, T. Operando Temperature Measurements of Photovoltaic Laser Power Converter Devices Under Continuous High-Intensity Illumination. IEEE J. Photovolt. 2023, 13, 808. [Google Scholar] [CrossRef]
- Albert, P.; Jaouad, A.; Hamon, G.; Volatier, M.; Valdivia, C.E.; Deshayes, Y.; Hinzer, K.; Béchou, L.; Aimez, V.; Darnon, M. Miniaturization of InGaP/InGaAs/Ge solar cells for micro-concentrator photovoltaics. Prog. Photovolt. Res. Appl. 2021, 29, 990–999. [Google Scholar] [CrossRef]
- Fafard, S.; York, M.C.A.; Proulx, F.; Valdivia, C.E.; Wilkins, M.M.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D.P. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl. Phys. Lett. 2016, 108, 071101. [Google Scholar] [CrossRef]
- Matsuura, M. Recent advancement in power-over-fiber technologies. Photonics 2021, 8, 335. [Google Scholar] [CrossRef]
- Acerbi, F.; Paternoster, G.; Merzi, S.; Zorzi, N.; Gola, A. Nuv and vuv sensitive silicon photomultipliers technologies optimized for operation at cryogenic temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1046, 167683. [Google Scholar] [CrossRef]
- Delgado, M.; Gutiérrez, R.M.; Fuentes, F. Liquid argon photodetection systems for neutrino detectors: A minireview. J. Phys. Conf. Ser. 2020, 1672, 012009. [Google Scholar] [CrossRef]
- Brizzolari, C.; Carniti, P.; Cattadori, C.; Cristaldo, E.; de la Torre Rojo, A.; Delgado, M.; Falcone, A.; Francis, K.; Gallice, N.; Gotti, C.; et al. Cryogenic front-end amplifier design for large SiPM arrays in the DUNE FD1-HD photon detection system. J. Instrum. 2022, 17, P11017. [Google Scholar] [CrossRef]
- Temples, D.J.; McLaughlin, J.; Bargemann, J.; Baxter, D.; Cottle, A.; Dahl, C.E.; Lippincott, W.H.; Monte, A.; Phelan, J. Measurement of charge and light yields for Xe 127 L-shell electron captures in liquid xenon. Phys. Rev. D 2021, 104, 112001. [Google Scholar] [CrossRef]
- Abud, A.A.; Abi, B.; Acciarri, R.; Acero, M.A.; Adames, M.R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Aduszkiewicz, A.; et al. Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC. Eur. Phys. J. C 2022, 82, 618. [Google Scholar] [CrossRef] [PubMed]
- Ezzouine, Z.; Danovitch, D.; Bechou, L.; Pioro-Ladrière, M.; Lacerte, M. Contact resistance behavior of land grid array sockets at cryogenic temperatures required for quantum measurements. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 367. [Google Scholar] [CrossRef]
- Lindholm, E.A.; Stolov, A.A.; Dyer, R.S.; Slyman, B.; Burgess, D. Reliability of Optical Fibers in a Cryogenic Environment. In Proceedings of the Fiber Optic Sensors and Applications VI, Orlando, FL, USA, 13–17 April 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7316, pp. 258–263. [Google Scholar]
- Fafard, S.; Masson, D.P. Perspective on photovoltaic optical power converters. J. Appl. Phys. 2021, 130, 160901. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. High-Efficiency and High-Power Multijunction InGaAs/InP Photovoltaic Laser Power Converters for 1470 nm. Photonics 2022, 9, 438. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. 74.7% Efficient GaAs-Based Laser Power Converters at 808 nm at 150 K. Photonics 2022, 9, 579. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D. 67.5% Efficient InP-Based Laser Power Converters at 1470 nm at 77 K. Photonics 2024, 11, 130. [Google Scholar] [CrossRef]
- Helmers, H.; Lopez, E.; Höhn, O.; Lackner, D.; Schön, J.; Schauerte, M.; Schachtner, M.; Dimroth, F.; Bett, A.W. 68.9% Efficient GaAs-Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance. Phys. Status Solidi (RRL) Rapid Res. Lett. 2021, 15, 2100113. [Google Scholar] [CrossRef]
- Algora, C.; García, I.; Delgado, M.; Peña, R.; Vázquez, C.; Hinojosa, M.; Rey-Stolle, I. Beaming power: Photovoltaic laser power converters for power-by-light. Joule 2022, 6, 340–368. [Google Scholar] [CrossRef]
- Wang, A.-C.; Yin, J.-J.; Yu, S.-Z.; Sun, Y.-R.; Dong, J.-R. Origins of the short circuit current of a current mismatched multijunction photovoltaic cell considering subcell reverse breakdown. Opt. Express 2023, 31, 14482–14494. [Google Scholar] [CrossRef] [PubMed]
- Beattie, M.N.; Valdivia, C.E.; Wilkins, M.M.; Zamiri, M.; Kaller, K.L.C.; Tam, M.C.; Kim, H.S.; Krich, J.J.; Wasilewski, Z.R.; Hinzer, K. High current density tunnel diodes for multi-junction photovoltaic devices on InP substrates. Appl. Phys. Lett. 2021, 118, 062101. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Sorokina, S.V.; Khvostikova, O.A.; Nakhimovich, M.V.; Shvarts, Z. Ge-Based Photovoltaic Laser-Power Converters. IEEE J. Photovolt. 2023, 13, 254–259. [Google Scholar] [CrossRef]
- Kalyuzhnyy, N.A.; Malevskaya, A.V.; Mintairov, S.A.; Mintairov, M.A.; Nakhimovich, M.V.; Salii, R.A.; Shvarts, M.Z.; Andreev, V.M. Photovoltaic AlGaAs/GaAs devices for conversion of high-power density laser (800–860 nm) radiation. Sol. Energy Mater. Sol. Cells 2023, 262, 112551. [Google Scholar] [CrossRef]
- Gou, Y.; Zhu, L.; Mou, Z.; Chen, Y.; Cheng, Y.; Wang, J.; Yang, H.; Deng, G. InP-based tunnel junctions for ultra-high concentration photovoltaics. Opt. Express 2024, 32, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Helmers, H.; Oliva, E.; Schachtner, M.; Mikolasch, G.; Ruiz-Preciado, L.A.; Franke, A.; Bartsch, J. Overcoming Optical-Electrical Grid Design Trade-Offs for cm2-Sized High-Power GaAs Photonic Power Converters by Plating Technology. Prog. Photovolt. Res. Appl. 2024, in press. [CrossRef]
- Gou, Y.; Mou, Z.; Wang, H.; Chen, Y.; Wang, J.; Yang, H.; Deng, G. High-performance laser power converters with resistance to thermal annealing. Opt. Express 2024, 32, 8335–8342. [Google Scholar] [CrossRef] [PubMed]
- Optical Fibers from Fiber Instrument Sales (FIS) Were Used in This Study for the 1-km and 5-km Single-Mode and Multi-Mode Fiber Cables. The Single-Mode Fiber is a Corning SMF28-Ultra with a Core Diameter of 8.2 μm, Cladding of 125 μm, and NA ~0.14. The Multi-Mode Fiber is a Standard Graded-Index Corning InfiniCor OM1 Fiber with a Core Diameter of 62.5 μm, Cladding of 125 μm, and NA ~ 0.275. Available online: https://www.fiberinstrumentsales.com/ (accessed on 3 June 2024).
- BWT Beijing Ltd. Laser Diodes were Used as Multi-Mode Sources: A 7W ~1470 nm Source with a 105 μm Core was Used for the MM Experiements at 20 °C and a 8W~808 nm Source with a 400 μm Core was Used for the MM Experiements at 77 K. Available online: https://www.bwt-bj.com/en/product/ (accessed on 3 June 2024).
- A SemiNex Corporation Laser Diode was Used as a High-Power Single-Mode 1550 nm Source with a 10 nm Spectral-Width. Available online: https://seminex.com/ (accessed on 3 June 2024).
- A Lens-Coupler from OzOptics Limited was Used in this Study to Couple the 105 μm Core Fiber Laser Source to the Standard 62.5 μm Core OM1 Fiber: Part #AA-300-33-1550-M-SP1. Available online: https://www.ozoptics.com/ (accessed on 3 June 2024).
- Optical Fibers from Thorlabs Were Used in This Study for the Bare Polyimide Fibers. Available online: https://www.thorlabs.com/ (accessed on 3 June 2024).
- Laser Power Converters from Broadcom Were Used in This Study. Available online: https://www.broadcom.com/products/fiber-optic-modules-components/industrial/optical-power-components/optical-power-converters/ (accessed on 3 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fafard, S.; Masson, D. Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures. Photonics 2024, 11, 596. https://doi.org/10.3390/photonics11070596
Fafard S, Masson D. Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures. Photonics. 2024; 11(7):596. https://doi.org/10.3390/photonics11070596
Chicago/Turabian StyleFafard, Simon, and Denis Masson. 2024. "Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures" Photonics 11, no. 7: 596. https://doi.org/10.3390/photonics11070596
APA StyleFafard, S., & Masson, D. (2024). Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures. Photonics, 11(7), 596. https://doi.org/10.3390/photonics11070596