Modulated Short-Time Fourier-Transform-Based Nonstationary Signal Decomposition for Dual-Comb Ranging Systems
Abstract
:1. Introduction
2. Main Result
Algorithm 1. MSTFT-based nonstationary signal decomposition. |
1. Input: signal , (a small thresholding parameter); |
2. Calculate MSTFT of to obtain ; |
3. For each t, cluster to obtain precisely clusters , . |
4. Extrema estimation . |
5. Output: Recovered frequencies , |
recovered amplitudes , |
recovered modes . |
3. Experimentation and Examples
4. Experiments Results for Dual-Comb-Based Underwater LiDAR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Zhang, L.; Zhai, X.; Li, L.; Zhou, Q.; Chen, X.; Li, X. Polarization Lidar: Principles and Applications. Photonics 2023, 10, 1118. [Google Scholar] [CrossRef]
- Chang, J.; Zhu, L.; Li, H.; Xu, F.; Liu, B.; Yang, Z. Noise reduction in Lidar signal using correlation-based EMD combined with soft thresholding and roughness penalty. Opt. Commun. 2018, 407, 290–295. [Google Scholar] [CrossRef]
- Rocadenbosch, F.; Soriano, C.; Comeron, A.; Baldasano, J.M. Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter. Appl. Opt. 1999, 38, 3175–3189. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Goudail, F. Vortex retarder-based Stokes polarimeters: Optimal data processing and autocalibration capability. Opt. Lett. 2024, 49, 1696–1699. [Google Scholar] [CrossRef]
- Pankratova, M.; Vasylchenkova, A.; Derevyanko, S.A.; Chichkov, N.B.; Prilepsky, J.E. Signal-noise interaction in optical-fiber communication systems employing nonlinear frequency-division multiplexing. Phys. Rev. Appl. 2020, 13, 054021. [Google Scholar] [CrossRef]
- Lin, Y.; Tan, Y.K.; Tian, B. A novel approach for decomposition of biomedical signals in different applications based on data-adaptive Gaussian average filtering. Biomed. Signal Process. Control 2022, 71, 103104. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, L.; Wang, K.; Zhang, X.; Gao, C. Coherent Doppler wind lidar signal denoising adopting variational mode decomposition based on honey badger algorithm. Opt. Express 2022, 30, 25774–25787. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zhou, Z.; Hua, D.; Wang, Y.; Yan, Q.; Li, S.; Li, Y.; Wang, H. Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique. Opt. Lasers Eng. 2013, 51, 961–966. [Google Scholar] [CrossRef]
- Hou, T.Y.; Shi, Z. Data-driven time–frequency analysis. Appl. Comput. Harmon. Anal. 2013, 35, 284–308. [Google Scholar] [CrossRef]
- Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Daubechies, I.; Lu, J.; Wu, H. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef]
- Yang, H. Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions. Appl. Comput. Harmon. Anal. 2015, 39, 33–66. [Google Scholar] [CrossRef]
- Yang, H.; Ying, L. Synchrosqueezed curvelet transform for two-dimensional mode decomposition. SIAM J. Math. Anal. 2014, 46, 2052–2083. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, J.; Zhao, T.h.; Sun, Y. Synchrosqueezing S-transform and its application in seismic spectral decomposition. IEEE Trans. Geosci. Remote Sens. 2015, 54, 817–825. [Google Scholar] [CrossRef]
- Thakur, G.; Wu, H.T. Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM J. Math. Anal. 2011, 43, 2078–2095. [Google Scholar] [CrossRef]
- Li, L.; Cai, H.; Han, H.; Jiang, Q.; Ji, H. Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation. Signal Process. 2020, 166, 107231. [Google Scholar] [CrossRef]
- Chui, C.K.; Mhaskar, H. Signal decomposition and analysis via extraction of frequencies. Appl. Comput. Harmon. Anal. 2016, 40, 97–136. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, H.; Xu, P.; Qian, Z.; Xu, X.; Li, Z.; Zhai, J.; Li, X.; Xue, B. Direct measurement of underwater sound velocity via dual-comb system and matched filtering algorithm. IEEE Trans. Instrum. Meas. 2023, 72, 1007210. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, H.; Zhu, Z.; Qian, Z.; Xu, X.; Zhai, J.; Chen, X.; Li, X. Enhanced underwater LiDAR via dual-comb interferometer and pulse coding. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4206211. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, H.; Zhu, Z.; Wang, C.; Hu, H.; Zhai, J.; Li, X. Enhanced Dual-Comb Underwater Ranging via an Improved VMD Algorithm. IEEE J. Ocean. Eng. 2024. [Google Scholar] [CrossRef]
- Harvey, A.H.; Kaplan, S.G.; Burnett, J.H. Effect of dissolved air on the density and refractive index of water. Int. J. Thermophys. 2005, 26, 1495–1514. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Zhao, L.; Wang, H.; Yu, Y.; Wu, L.; Liu, T. Polarimetric image recovery method combining histogram stretching for underwater imaging. Sci. Rep. 2018, 8, 12430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, H.; Hu, M.; Jiang, A.; Zhang, L.; Xu, F.; Hao, G. An adaptive CEEMDAN thresholding denoising method optimized by nonlocal means algorithm. IEEE Trans. Instrum. Meas. 2020, 69, 6891–6903. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, N.; Wang, C.; Wu, Z.; Zhai, X.; Pei, Y.; Shi, H.; Li, X. Modulated Short-Time Fourier-Transform-Based Nonstationary Signal Decomposition for Dual-Comb Ranging Systems. Photonics 2024, 11, 560. https://doi.org/10.3390/photonics11060560
Han N, Wang C, Wu Z, Zhai X, Pei Y, Shi H, Li X. Modulated Short-Time Fourier-Transform-Based Nonstationary Signal Decomposition for Dual-Comb Ranging Systems. Photonics. 2024; 11(6):560. https://doi.org/10.3390/photonics11060560
Chicago/Turabian StyleHan, Ningning, Chao Wang, Zhiyang Wu, Xiaoyu Zhai, Yongzhen Pei, Haonan Shi, and Xiaobo Li. 2024. "Modulated Short-Time Fourier-Transform-Based Nonstationary Signal Decomposition for Dual-Comb Ranging Systems" Photonics 11, no. 6: 560. https://doi.org/10.3390/photonics11060560
APA StyleHan, N., Wang, C., Wu, Z., Zhai, X., Pei, Y., Shi, H., & Li, X. (2024). Modulated Short-Time Fourier-Transform-Based Nonstationary Signal Decomposition for Dual-Comb Ranging Systems. Photonics, 11(6), 560. https://doi.org/10.3390/photonics11060560