# Penrose Scattering in Quantum Vacuum

## Abstract

**:**

## 1. Introduction

## 2. Light Spring in Vacuum

## 3. Quantum Currents

## 4. Scattered Radiation

## 5. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Yoon, J.W.; Kim, Y.G.; Choi, I.W.; Sung, J.H.; Lee, H.W.; Lee, S.K.; Nam, C.H. Realization of Laser Intensity over 10
^{23}W/cm^{2}. Optica**2021**, 8, 630. [Google Scholar] [CrossRef] - Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely High-Intensity Laser Interactions with Fundamental Quantum Systems. Rev. Mod. Phys.
**2012**, 84, 1177. [Google Scholar] [CrossRef] - Gonoskov, A.; Blackburn, T.G.; Marklund, M.; Bulanov, S.S. Charged Particle Motion and Radiation in Strong Electromagnetic Fields. Rev. Mod. Phys.
**2022**, 94, 045001. [Google Scholar] [CrossRef] - Fedotov, A.; Ilderton, A.; Karbstein, F.; King, B.; Seipt, D.; Taya, H.; Torgrimsson, G. Advances in QED with Intense Background Fields. Phys. Rep.
**2023**, 1010, 1–138. [Google Scholar] [CrossRef] - Brodin, G.; Marklund, M.; Stenflo, L. Proposal for Detection of QED Vacuum Nonlinearities in Maxwell’s Equations by the Use of Waveguides. Phys. Rev. Lett.
**2001**, 87, 171801. [Google Scholar] [CrossRef] - Bialynicka-Birula, Z.; Bialynicki-Birula, I. Nonlinear Effects in Quantum Electrodynamics. Photon Propagation and Photon Splitting in an External Field. Phys. Rev. D
**1970**, 2, 2341. [Google Scholar] [CrossRef] - Lundstrom, E.; Brodin, G.; Lundin, J.; Marklund, M.; Bingham, R.; Collier, J.; Mendonça, J.T.; Norreys, P. Using High-Power Lasers for Detection of Elastic Photon-Photon Scattering. Phys. Rev. Lett.
**2006**, 96, 083602. [Google Scholar] [CrossRef] [PubMed] - Gies, H.; Karbstein, F.; Seegert, N. Quantum Reflection of Photons off Spatio-temporal Electromagnetic Field Inhomogeneities. New J. Phys.
**2015**, 17, 043060. [Google Scholar] [CrossRef] - Mendonça, J.T.; Marklund, M.; Shukla, P.K.; Brodin, G. Photon Acceleration in Vacuum. Phys. Lett. A
**2006**, 359, 700. [Google Scholar] [CrossRef] - Schwinger, J. On Gauge Invariance and Vacuum Polarization. Phys. Rev.
**1951**, 82, 664. [Google Scholar] [CrossRef] - Heisenberg, W.; Euler, H. Consequences of Dirac’s Theory of Positrons. Z. Phys.
**1936**, 98, 714. [Google Scholar] [CrossRef] - Gies, H.; Karbstein, F. An Addendum to the Heisenberg-Euler Effective Action Beyond One Loop. J. High Energy Phys.
**2017**, 3, 108. [Google Scholar] [CrossRef] - Mendonça, J.T. Superradiance in Quantum Vacuum. Quantum Rep.
**2021**, 3, 42–52. [Google Scholar] [CrossRef] - Mendonça, J.T. Particle-Pair Creation by High-Harmonic Laser Fields. Phys. Scr.
**2023**, 98, 125606. [Google Scholar] [CrossRef] - Penrose, R. Gravitational Collapse: The Role of General Relativity. Gen. Rel. Grav.
**2002**, 34, 1141–1165. [Google Scholar] [CrossRef] - Zel’dovich, Y.B. Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body. Sov. J. Exp. Theor. Phys.
**1972**, 35, 1085. [Google Scholar] - Brito, R.; Cardoso, V.; Pani, P. Superradiance; Springer: Cham, Switzerland, 2020; Volume 906, pp. 1–237. [Google Scholar]
- Zhang, H.; Zhang, B. Shielding of Penrose Superradiance in Optical Black Holes. Eur. Phys. J. C
**2023**, 83, 233. [Google Scholar] [CrossRef] - Braidotti, M.C.; Prizia, R.; Maitland, C.; Marino, F.; Prain, A.; Starshynov, I.; Westerberg, N.; Wright, E.M.; Faccio, D. Measurement of Penrose Superradiance in a Photon Superfluid. Phys. Rev. Lett.
**2022**, 128, 013901. [Google Scholar] [CrossRef] [PubMed] - Cromb, M.; Gibson, G.M.; Toninelli, E.; Padgett, M.J.; Wright, E.M.; Faccio, D. Amplification of Waves from a Rotating Body. Nat. Phys.
**2020**, 16, 1069. [Google Scholar] [CrossRef] - Torres, T.; Patrick, S.; Coutant, A.; Richartz, M.; Tedford, E.W.; Weinfurtner, S. Rotational Superradiant Scattering in a Vortex Flow. Nat. Phys.
**2017**, 13, 833. [Google Scholar] [CrossRef] - Mendonça, J.T.; Vieira, J.; Willim, C.; Fedele, R. Particle Acceleration by Twisted Laser Beams. Front. Phys.
**2022**, 10, 995379. [Google Scholar] [CrossRef] - Vieira, J.; Mendonça, J.T.; Quéré, F. Optical Control of the Topology of Laser-Plasma Accelerators. Phys. Rev. Lett.
**2018**, 121, 054801. [Google Scholar] [CrossRef] - Mendonça, J.T.; Willim, C.; Vieira, J. Twisted Waves near a Plasma Cutoff. Symmetry
**2022**, 14, 146. [Google Scholar] [CrossRef] - Pariente, G.; Quéré, F. Spatio-Temporal Light Springs: Extended Encoding of Orbital Angular Momentum in Ultrashort Pulses. Opt. Lett.
**2015**, 40, 2037. [Google Scholar] [CrossRef] - Karbstein, F.; Gies, H.; Reuter, M.; Zepf, M. Vacuum birefringence in strong inhomogeneous electromagnetic fields. Phys. Rev. D
**2015**, 92, 071301(R). [Google Scholar] [CrossRef] - Mendonça, J.T. Emission of Twisted Photons from Quantum Vacuum. EuroPhys. Lett.
**2017**, 120, 61001. [Google Scholar] [CrossRef] - Li, S.; Li, G.; Ain, Q.; Hur, M.S.; Ting, A.C.; Kulagin, V.V.; Kamperidis, C.; Hafz, N.A.M. A laser-plasma accelerator driven by two-color relativistic femtosecond laser pulses. Sci. Adv.
**2019**, 5, eaav7940. [Google Scholar] [CrossRef] - Wang, J.W.; Zepf, M.; Rykovanov, S.G. Intense Attosecond Pulses Carrying Orbital Angular Momentum using Laser Plasma Interactions. Nat. Commun.
**2019**, 10, 5554. [Google Scholar] [CrossRef] - Braidotti, M.C.; Marino, F.; Wright, E.M.; Faccio, D. The Penrose Process in Nonlinear Optics. AVS Quantum Sci.
**2022**, 4, 010501. [Google Scholar] [CrossRef]

**Figure 1.**Geometry of Penrose scattering in vacuum: (

**A**)—an intense light spring propagates in the z direction, with frequencies ${\omega}_{1}$ and ${\omega}_{2}$, its intensity rotates around the z axis; (

**B**) a probe pulse with frequency ${\omega}_{i}$ propagates along the (negative) x direction and collides perpendicularly with the light spring; (

**C**) scattered signals are emitted with frequencies ${\omega}_{\pm}$ and an angular spread dictated by the light spring structure.

**Figure 2.**Representation of the radial integral $\mathcal{I}\left(r\right)$, for $\Delta \ell =1$, with ${J}_{1}\left(r\right)$ in red, ${R}_{12}\left(r\right)$ in dashed red. We have used ${\ell}_{1}=14$ and $k=1$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mendonça, J.T.
Penrose Scattering in Quantum Vacuum. *Photonics* **2024**, *11*, 448.
https://doi.org/10.3390/photonics11050448

**AMA Style**

Mendonça JT.
Penrose Scattering in Quantum Vacuum. *Photonics*. 2024; 11(5):448.
https://doi.org/10.3390/photonics11050448

**Chicago/Turabian Style**

Mendonça, José Tito.
2024. "Penrose Scattering in Quantum Vacuum" *Photonics* 11, no. 5: 448.
https://doi.org/10.3390/photonics11050448