Deep Learning-Enhanced Inverse Modeling of Terahertz Metasurface Based on a Convolutional Neural Network Technique
Abstract
:1. Introduction
2. Theory and Methodology
2.1. THz Metasurface Sensor and Resonant Characteristics
2.2. Deep Learning Algorithms
3. Data Collection and Model Construction
3.1. THz Metasurface Sensor Structure Representation and Dataset Generation
3.2. One-Dimensional CNN Inversion Model Construction
4. Results and Discussion
4.1. Confirm the Model Structure
4.2. Inversion Verification
4.3. Prediction Time and Error
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fedorov, V.; Tzortzakis, S. Powerful Terahertz Waves from Long-wavelength Infrared Laser Filaments. Light Sci. Appl. 2020, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Lv, M.; Lu, X.; Jiang, Y.; Wu, G.; Li, G.; Li, L.; Li, Z.; Zhang, Y. Applications of THz Spectral Imaging in the Detection of Agricultural Products. Photonics 2021, 8, 518. [Google Scholar] [CrossRef]
- Ge, Z.; Wang, Y.; Cao, Y.; Chen, H. Multilayer Flexible Metamaterials With Fano Resonances. IEEE Photonics J. 2016, 8, 4600109. [Google Scholar] [CrossRef]
- Gong, Y.; Quan, B.; Hu, F.; Zhang, L.; Jiang, M.; Lin, S. Intervalley Scattering Induced Terahertz Field Enhancement in Graphene Metasurface. Nano Lett. 2023, 23, 11051–11056. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.; Sun, X.; Wei, J.; Jia, X.; Cheng, X.; Cheng, R. High-Sensitivity Terahertz Biosensor Based on Plasmon-Induced Transparency Metamaterials. Photonics 2023, 10, 1258. [Google Scholar] [CrossRef]
- Özer, Z.; Akdoğan, V.; Wang, L.; Karaaslan, M. Graphene-Based Tunable Metamaterial Absorber for Terahertz Sensing Applications. Plasmonics 2024. [Google Scholar] [CrossRef]
- Lu, Y.; Hale, L.L.; Zaman, A.M.; Addamane, S.J.; Brener, I.; Oleg, M.; Degl’Innocenti, R. Near-Field Spectroscopy of Individual Asymmetric Split-Ring Terahertz Resonators. ACS Photonics 2023, 10, 2832–2838. [Google Scholar] [CrossRef]
- Gupta, J.; Das, P.; Bhattacharjee, R.; Sikdar, D. Enhancing Signal-to-noise Ratio of Clinical 1.5T MRI Using Metasurface-inspired Flexible Wraps. Appl. Phys. 2023, 129, 725. [Google Scholar] [CrossRef]
- Cusano, A.M.; Quero, G.; Vaiano, P.; Cicatiello, P.; Principe, M.; Micco, A.; Ruvo, M.; Consales, M.; Cusano, A. Metasurface-assisted Lab-on-fiber Optrode for Highly Sensitive Detection of Vitamin D. Biosens. Bioelectron. 2023, 242, 115717. [Google Scholar] [CrossRef]
- Mishra, R.; Panwar, R.; Singh, D. Equivalent Circuit Model for the Design of Frequency-Selective, Terahertz-Band, Graphene-Based Metamaterial Absorbers. IEEE Magn. Lett. 2018, 9, 3707205. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.; Shi, Z.; Xiu, S.; Cui, Y.; Hou, Y.; Li, R.; Wang, N.; Zhang, L.; Li, X.; et al. Electric Field Dropping Effect Enhanced Extraordinary Sensitivity of THz Electromagnetically Induced Transparency Metamaterial. IEEE Sens. J. 2024, 24, 7807–7815. [Google Scholar] [CrossRef]
- Gaynutdinov, R.R.; Chermoshentsev, S.F. Metaelement Parameters Optimization for Creation Metamaterial with Given Electromagnetic Properties. In Proceedings of the 2021 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 5 September 2021. [Google Scholar] [CrossRef]
- Qiu, T.; Shi, X.; Wang, J.; Li, Y.; Qu, S.; Cheng, Q.; Cui, T.; Sui, S. Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design. Adv. Sci. 2019, 6, 1900128. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Qiu, T.; Wang, J.; Zhao, X.; Qu, S. Metasurface Inverse Design Using Machine Learning Approaches. J. Phys. D 2020, 53, 275105. [Google Scholar] [CrossRef]
- Pal, D.; Singhal, R.; Bandyopadhyay, A.K. Parametric Optimization of Complementary Split-Ring Resonator Dimensions for Planar Antenna Size Miniaturization. Wirel. Pers. Commun. 2022, 123, 1897–1911. [Google Scholar] [CrossRef]
- Haffa, S.; Hollmann, D.; Wiesbeck, W. The Finite Difference Method for S-Parameter Calculation of Arbitrary Three-Dimensional Structures. IEEE Trans. Microw. Theory Technol. 1992, 40, 1602–1610. [Google Scholar] [CrossRef]
- Yue, T.; Jiang, Z.; Panaretos, A.H.; Werner, D.H. A Compact Dual-Band Antenna Enabled by a Complementary Split-Ring Resonator-Loaded Metasurface. IEEE Trans. Antennas Propag. 2017, 65, 6878–6888. [Google Scholar] [CrossRef]
- Huang, X. Design of Miniaturized SIW Filter Loaded with Improved CSRR Structures. Electronics 2023, 12, 3789. [Google Scholar] [CrossRef]
- Xiong, J.; Ying, Z.; He, S. A Broadband Low Profile Patch Antenna of Compact Size with Three Resonances. IEEE Trans. Antennas Propag. 2009, 57, 1838–1843. [Google Scholar] [CrossRef]
- Carr, A.R.; Chan, Y.J.; Reuel, N.F. Contact-Free, Passive, Electromagnetic Resonant Sensors for Enclosed Biomedical Applications: A Perspective on Opportunities and Challenges. ACS Sens. 2023, 8, 943–955. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, G.; Xu, Y.; Yao, Z.; Zhang, S.; Yan, Y.; Tian, Z. Exploring the Application of Multi-Resonant Bands Terahertz Metamaterials in the Field of Carbohydrate Films Sensing. Biosensors 2023, 13, 606. [Google Scholar] [CrossRef]
- Zaitsev, A.D.; Demchenko, P.S.; Kablukova, N.S.; Vozianova, A.V.; Khodzitsky, M.K. Frequency-Selective Surface Based on Negative-Group-Delay Bismuth–Mica Medium. Photonics 2023, 10, 501. [Google Scholar] [CrossRef]
- Barzegar-Parizi, S.; Vafapour, Z. Dynamically Switchable Sub-THz Absorber Using VO2 Metamaterial Suitable in Optoelectronic Applications. IEEE Trans. Plasma Sci. 2022, 50, 5038–5045. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, W.; Zheng, G. Convergence of Gradient Method With Momentum for Two-Layer Feedforward Neural Networks. IEEE Trans. Neural Netw. 2006, 17, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Ren, N.; Fu, Z.; Zhou, D.; Kong, D.; Liu, H.; Tian, S. Jitter Decomposition Meets Machine Learning: 1D-Convolutional Neural Network Approach. IEEE Commun. Lett. 2021, 25, 1911–1915. [Google Scholar] [CrossRef]
- Rawal, V.; Prajapati, P.; Darji, A. Hardware Implementation of 1D-CNN Architecture for ECG Arrhythmia Classification. Biomed. Signal Proces. 2023, 85, 104865. [Google Scholar] [CrossRef]
- Parhi, R.; Nowak, R.D. The Role of Neural Network Activation Functions. IEEE Signal Process. Lett. 2020, 27, 1779–1783. [Google Scholar] [CrossRef]
- Fu, S.; Wang, X.; Tang, J.; Lan, S.; Tian, Y. Generalized Robust Loss Functions for Machine Learning. Neural Netw. 2024, 171, 200–214. [Google Scholar] [CrossRef]
- Li, Y.; Ren, X.; Zhao, F.; Yang, S. A Zeroth-Order Adaptive Learning Rate Method to Reduce Cost of Hyperparameter Tuning for Deep Learning. Appl. Sci. 2021, 11, 10184. [Google Scholar] [CrossRef]
Number of Example | 1 | 2 | 3 | |
---|---|---|---|---|
Prediction time | h = 20 μm | 0.014s | 0.014s | 0.014s |
h = 50 μm | 0.065s | 0.060s | 0.013s | |
h = 80 μm | 0.014s | 0.057s | 0.015s | |
Prediction Error (MSE) | h = 20 μm | 0.009 | 0.001 | 0.002 |
h = 50 μm | 0.438 | 0.453 | 0.086 | |
h = 80 μm | 0.301 | 0.017 | 0.001 |
Method Name | Prediction Accuracy | Data Preprocessing | Encoding and Decoding Means | Application Band |
---|---|---|---|---|
This method | 93.3% | × | × | 0.1–1.1 THz |
AMID | 81.6% | √ | √ | 3–20 GHz |
REACTIVE | 76.5% | √ | √ | 2–20 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Jiang, D.; Zhu, G.; Wang, B. Deep Learning-Enhanced Inverse Modeling of Terahertz Metasurface Based on a Convolutional Neural Network Technique. Photonics 2024, 11, 424. https://doi.org/10.3390/photonics11050424
Gao M, Jiang D, Zhu G, Wang B. Deep Learning-Enhanced Inverse Modeling of Terahertz Metasurface Based on a Convolutional Neural Network Technique. Photonics. 2024; 11(5):424. https://doi.org/10.3390/photonics11050424
Chicago/Turabian StyleGao, Muzhi, Dawei Jiang, Gaoyang Zhu, and Bin Wang. 2024. "Deep Learning-Enhanced Inverse Modeling of Terahertz Metasurface Based on a Convolutional Neural Network Technique" Photonics 11, no. 5: 424. https://doi.org/10.3390/photonics11050424
APA StyleGao, M., Jiang, D., Zhu, G., & Wang, B. (2024). Deep Learning-Enhanced Inverse Modeling of Terahertz Metasurface Based on a Convolutional Neural Network Technique. Photonics, 11(5), 424. https://doi.org/10.3390/photonics11050424