A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals
Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Gancarz, J.; Elgala, H.; Little, T.D.C. Impact of lighting requirements on VLC systems. IEEE Commun. Mag. 2013, 51, 34–41. [Google Scholar] [CrossRef]
- Kashef, M.; Ismail, M.; Abdallah, M.; Qaraqe, K.A.; Serpedin, E. Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 2016, 34, 883–893. [Google Scholar] [CrossRef]
- Sadat, H.; Abaza, M.; Mansour, A.; Alfalou, A. A survey of NOMA for VLC systems: Research challenges and future trends. Sensors 2022, 22, 1395. [Google Scholar] [CrossRef]
- Lin, H.; Siohan, P. An advanced multi-carrier modulation for future radio systems. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 8097–8101. [Google Scholar]
- Shaik, N.; Malik, P.K. A comprehensive survey 5G wireless communication systems: Open issues, research challenges, channel estimation, multi carrier modulation and 5G applications. Multimed. Tools Appl. 2021, 80, 28789–28827. [Google Scholar] [CrossRef]
- Chen, R.; Park, K.H.; Shen, C.; Ng, T.K.; Ooi, B.S.; Alouini, M.S. Visible light communication using DC-biased optical filter bank multi-carrier modulation. In Proceedings of the IEEE 2018 Global LIFI Congress (GLC), Paris, France, 8–9 February 2018; pp. 1–6. [Google Scholar]
- Ibrahim, A.; Prat, J.; Ismail, T. Asymmetrical clipping optical filter bank multi-carrier modulation scheme. Opt. Quantum Electron. 2021, 53, 230. [Google Scholar] [CrossRef]
- Khan, J.; Khan, Y.; Ullah, S.; Shafique Querishi, S. Transmission performance and cost analysis of multi-carrier-based wavelength division multiplexed passive optical access network. J. Opt. Commun. 2020, 41, 159–165. [Google Scholar] [CrossRef]
- Li, X.; Yu, J. W-band RoF transmission based on optical multi-carrier generation by cascading one directly-modulated DFB laser and one phase modulator. Opt. Commun. 2015, 345, 80–85. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Z.; Cheng, J.; Guo, C.; Feng, C. A relay-assisted OFDM system for VLC uplink transmission. IEEE Trans. Commun. 2019, 67, 6268–6281. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, L.; Liu, S.; Zhang, Z. A survey: Several technologies of non-orthogonal transmission for 5G. China Commun. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Seo, B.; Sim, D.; Lee, T.; Lee, C. Efficient time synchronization method with adaptive resource configuration for FBMC systems. IEEE Trans. Commun. 2020, 68, 5563–5574. [Google Scholar] [CrossRef]
- Arjun, R.; Shah, H.; Dhua, S.; Appaiah, K.; Gadre, V.M. Low complexity FBMC for wireless MIMO systems. Phys. Commun. 2021, 47, 101332. [Google Scholar] [CrossRef]
- Shao, Y.F.; Chen, L.; Wang, A.R.; Zhao, Y.J.; Long, Y.; Ji, X.P. Analysis of different sub-carrier allocation of M-ary QAM-OFDM downlink in RoF system. Optoelectron. Lett. 2018, 14, 40–43. [Google Scholar] [CrossRef]
- Tao, Y. Simulation performance analysis of FBMC-OQAM system based on frequency spreading. In Proceedings of the Second International Conference on Physics, Photonics, and Optical Engineering (ICPPOE 2023), Kunming, China, 10–12 November 2023; SPIE: Bellingham, WA, USA, 2024; Volume 13075, pp. 682–689. [Google Scholar]
- Hashimoto, N.; Osawa, N.; Yamazaki, K.; Ibi, S. Channel estimation and equalization for CP-OFDM-based OTFS in fractional doppler channels. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Liu, Y.; Yi, J.; Wan, X.; Zhang, X.; Ke, H. Evaluation of clutter suppression in CP-OFDM-based passive radar. IEEE Sens. J. 2019, 19, 5572–5586. [Google Scholar] [CrossRef]
- Yli-Kaakinen, J.; Loulou, A.; Levanen, T.; Pajukoski, K.; Palin, A.; Renfors, M.; Valkama, M. Frequency-domain signal processing for spectrally-enhanced CP-OFDM waveforms in 5G new radio. IEEE Trans. Wirel. Commun. 2021, 20, 6867–6883. [Google Scholar] [CrossRef]
- Nadal, J.; Nour, C.A.; Baghdadi, A. Low-complexity pipelined architecture for FBMC/OQAM transmitter. IEEE Trans. Circuits Syst. II Express Briefs 2015, 63, 19–23. [Google Scholar] [CrossRef]
- Rottenberg, F.; Nguyen, T.H.; Gorza, S.P.; Horlin, F.; Louveaux, J. Advanced chromatic dispersion compensation in optical fiber FBMC-OQAM systems. IEEE Photonics J. 2017, 9, 7204710. [Google Scholar] [CrossRef]
- Bellanger, M.; Le Ruyet, D.; Roviras, D.; Terré, M.; Nossek, J.; Baltar, L.; Bai, Q.; Waldhauser, D.; Renfors, M.; Ihalainen, T. FBMC physical layer: A primer. PHYDYAS 2010, 25, 7–10. [Google Scholar]
- Cui, W.; Qu, D.; Jiang, T.; Farhang-Boroujeny, B. Coded auxiliary pilots for channel estimation in FBMC-OQAM systems. IEEE Trans. Veh. Technol. 2015, 65, 2936–2946. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, D.; Wang, C.; Yan, S.; Zhu, Z. Deep learning-based channel estimation and equalization scheme for FBMC/OQAM systems. IEEE Wirel. Commun. Lett. 2019, 8, 881–884. [Google Scholar] [CrossRef]
- Laabidi, M.; Zayani, R.; Bouallegue, R. A novel multi-block selective mapping scheme for PAPR reduction in FBMC/OQAM systems. In Proceedings of the 2015 World Congress on Information Technology and Computer Applications (WCITCA), Hammamet, Tunisia, 11–13 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Nguyen, T.H.; Gorza, S.P.; Louveaux, J.; Horlin, F. Low-complexity blind phase search for filter bank multicarrier offset-QAM optical fiber systems. In Proceedings of the Signal Processing in Photonic Communications, Vancouver, BC, Canada, 18–20 July 2016; Optica Publishing Group: Washington, DC, USA, 2016. SpW2G. 2. [Google Scholar]
- Lu, Y.; Dai, L. Near-Field Channel Estimation in Mixed LoS/NLoS Environments for Extremely Large-Scale MIMO Systems. IEEE Trans. Commun. 2023, 71, 3694–3707. [Google Scholar] [CrossRef]
- Alkama, D.; Ouamri, M.A.; Alzaidi, M.S.; Shaw, R.N.; Azni, M.; Ghoneim, S.S.M. Downlink performance analysis in MIMO UAV-cellular communication with LOS/NLOS propagation under 3D beamforming. IEEE Access 2022, 10, 6650–6659. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Seow, C.K.; Sun, M.; Si, M.; Huang, L. UWB sensor-based indoor LOS/NLOS localization with support vector machine learning. IEEE Sens. J. 2023, 23, 2988–3004. [Google Scholar] [CrossRef]
- Cevik, T.; Yilmaz, S. An overview of visible light communication systems. arXiv 2015, arXiv:1512.03568. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, D.S.; Jo, J.H. Lighting and cooling energy assessment of multi-purpose control strategies for external movable shading devices by using shaded fraction. Energy Build. 2017, 150, 328–338. [Google Scholar] [CrossRef]
2 | 1 | / | / | −35 | |
3 | 1 | 0.911438 | 0.411438 | / | −44 |
4 | 1 | 0.971960 | 0.235147 | −64 |
Parameter | Value | |
---|---|---|
Room | Size | 4.5 m × 4.5 m × 3 m |
Space Position | (−1.125, −1.125, 3) (−1.125, 1.25, 3) (1.125, 1.125, 3) (1.125, −1.125, 3) | |
Optical Transmitter | Semi-angle at half power | 70° |
Transmit Power | 30 mW | |
LED Array | 60 × 60 | |
Center Emission Intensity | 300~900 lx | |
Optical Receiver | Effective Area | 1 cm2 |
FOV | 70° | |
Elevation | 90° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Li, Y.; Wang, A.; Zhu, Y.; Li, C.; Chen, P.; Zuo, R.; Yuan, J.; Liu, S. A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals. Photonics 2024, 11, 415. https://doi.org/10.3390/photonics11050415
Shao Y, Li Y, Wang A, Zhu Y, Li C, Chen P, Zuo R, Yuan J, Liu S. A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals. Photonics. 2024; 11(5):415. https://doi.org/10.3390/photonics11050415
Chicago/Turabian StyleShao, Yufeng, Yanlin Li, Anrong Wang, Yaodong Zhu, Chong Li, Peng Chen, Renjie Zuo, Jie Yuan, and Shuanfan Liu. 2024. "A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals" Photonics 11, no. 5: 415. https://doi.org/10.3390/photonics11050415
APA StyleShao, Y., Li, Y., Wang, A., Zhu, Y., Li, C., Chen, P., Zuo, R., Yuan, J., & Liu, S. (2024). A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals. Photonics, 11(5), 415. https://doi.org/10.3390/photonics11050415