Synergy of Nd:YAG Picosecond Pulsed Laser Irradiation and Electrochemical Anodization in the Formation of TiO2 Nanostructures for the Photocatalytic Degradation of Pesticide Carbofuran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Synthesis of Photocatalysts
2.2.1. Pulsed Laser-Induced Oxidation Method
2.2.2. Electrochemical Anodization and Annealing
2.3. Characterization
2.4. Testing of the Photocatalytic Properties and Analysis of Photodegradation Products
3. Results and Discussion
3.1. Morphology
3.2. Structural Properties
3.3. Optical Properties
3.4. Photocatalytic Properties
3.5. Photocatalytic Degradation Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kapusta-Kołodziej, J.; Chudecka, A.; Sulka, G.D. 3D Nanoporous Titania Formed by Anodization as a Promising Photoelectrode Material. J. Electroanal. Chem. 2018, 823, 221–233. [Google Scholar] [CrossRef]
- Ochiai, T.; Fujishima, A. Photoelectrochemical Properties of TiO2 Photocatalyst and Its Applications for Environmental Purification. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 247–262. [Google Scholar] [CrossRef]
- Madkhali, N.; Prasad, C.; Malkappa, K.; Choi, H.Y.; Govinda, V.; Bahadur, I.; Abumousa, R. Recent Update on Photocatalytic Degradation of Pollutants in Waste Water Using TiO2-Based Heterostructured Materials. Results Eng. 2023, 17, 100920. [Google Scholar] [CrossRef]
- Ikreedeegh, R.R.; Hossen, A.; Tahir, M.; Aziz, A.A. A Comprehensive Review on Anodic TiO2 Nanotube Arrays (TNTAs) and Their Composite Photocatalysts for Environmental and Energy Applications: Fundamentals, Recent Advances and Applications. Coord. Chem. Rev. 2024, 499, 215495. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2023, 268, 121725. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Hernandez, A.; Zuñiga Islas, C.; Moreno, M.; Calleja Arriaga, W.; Mendoza-Cervantes, J.C.; Carlos, N.; Ascencio-Hurtado, C.R.; Heredia Jiménez, A. Study of Oxygen Vacancies in TiO2 Nanostructures and Their Relationship with Photocatalytic Activity. Appl. Sci. 2022, 12, 3690. [Google Scholar] [CrossRef]
- Vukoje, I.D.; Tomašević-Ilić, T.D.; Zarubica, A.R.; Dimitrijević, S.; Budimir, M.D.; Vranješ, M.R.; Šaponjić, Z.V.; Nedeljković, J.M. Silver Film on Nanocrystalline TiO2 Support: Photocatalytic and Antimicrobial Ability. Mater. Res. Bull. 2014, 60, 824–829. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Thind, S.S.; Paul, M.; Hayden, J.B.; Joshi, A.; Goodlett, D.; McIndoe, J.S. A Highly Efficient Photocatalytic System for Environmental Applications Based on TiO2 Nanomaterials. Ind. Chem. Mater. 2023, 1, 431–442. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why Is Anatase a Better Photocatalyst than Rutile?-Model Studies on Epitaxial TiO2 Films. Sci. Rep. 2015, 4, 4043. [Google Scholar] [CrossRef]
- Chahrour, K.M.; Yam, F.K.; Lim, H.S.; Abdalrheem, R. Synthesis of Anodic TiO2 Nanotube Arrays Annealed at 700 °C for UV Photodetector. J. Phys. Conf. Ser. 2020, 1535, 012012. [Google Scholar] [CrossRef]
- Yang, S.; Tang, W.; Ishikawa, Y.; Feng, Q. Synthesis of Titanium Dioxide with Oxygen Vacancy and Its Visible-Light Sensitive Photocatalytic Activity. Mater. Res. Bull. 2011, 46, 531–537. [Google Scholar] [CrossRef]
- Ji, Z.; Wu, J.; Jia, T.; Peng, C.; Xiao, Y.; Liu, Z.; Liu, Q.; Fan, Y.; Han, J.; Hao, L. In-Situ Growth of TiO2 Phase Junction Nanorods with Ti3+ and Oxygen Vacancies to Enhance Photocatalytic Activity. Mater. Res. Bull. 2021, 140, 111291. [Google Scholar] [CrossRef]
- Setviń, M.; Aschauer, U.; Scheiber, P.; Li, Y.F.; Hou, W.; Schmid, M.; Selloni, A.; Diebold, U. Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101). Science 2013, 341, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, C.; Wang, Z.; Shi, Y.; Hou, Y.; Bi, J.; Wu, L. Improving Photocatalytic Degradation of Enrofloxacin over TiO2 Nanosheets with Ti3+ Sites by Coordination Activation. Appl. Catal. A Gen. 2023, 660, 119217. [Google Scholar] [CrossRef]
- Bazzanella, N.; Bajpai, O.P.; Fendrich, M.; Guella, G.; Miotello, A.; Orlandi, M. Ciprofloxacin Degradation with a Defective TiO2−x Nanomaterial under Sunlight. MRS Commun. 2023, 13, 1252–1259. [Google Scholar] [CrossRef]
- Sarkar, A.; Khan, G.G. The Formation and Detection Techniques of Oxygen Vacancies in Titanium Oxide-Based Nanostructures. Nanoscale 2019, 11, 3414–3444. [Google Scholar] [CrossRef]
- Machreki, M.; Chouki, T.; Tyuliev, G.; Žigon, D.; Ohtani, B.; Loukanov, A.; Stefanov, P.; Emin, S. Defective TiO2 Nanotube Arrays for Efficient Photoelectrochemical Degradation of Organic Pollutants. ACS Omega 2023, 8, 21605–21617. [Google Scholar] [CrossRef]
- Białous, A.; Gazda, M.; Grochowska, K.; Atanasov, P.; Dikovska, A.; Nedyalkov, N.; Reszczyńska, J.; Zaleska-Medynska, A.; Śliwiński, G. Nanoporous TiO2 Electrode Grown by Laser Ablation of Titanium in Air at Atmospheric Pressure and Room Temperature. Thin Solid Films 2016, 601, 41–44. [Google Scholar] [CrossRef]
- Medvids, A.; Onufrijevs, P.; Kaupužs, J.; Eglitis, R.; Padgurskas, J.; Zunda, A.; Mimura, H.; Skadins, I.; Varnagiris, S. Anatase or Rutile TiO2 Nanolayer Formation on Ti Substrates by Laser Radiation: Mechanical, Photocatalytic and Antibacterial Properties. Opt. Laser Technol. 2021, 138, 106898. [Google Scholar] [CrossRef]
- Blažeka, D.; Radičić, R.; Maletić, D.; Živković, S.; Momčilović, M.; Krstulović, N. Enhancement of Methylene Blue Photodegradation Rate Using Laser Synthesized Ag-Doped ZnO Nanoparticles. Nanomaterials 2022, 12, 2677. [Google Scholar] [CrossRef] [PubMed]
- Laketić, S.; Rakin, M.; Momčilović, M.; Ciganović, J.; Veljović; Cvijović-Alagić, I. Influence of Laser Irradiation Parameters on the Ultrafine-Grained Ti[Sbnd]45Nb Alloy Surface Characteristics. Surf. Coatings Technol. 2021, 418, 127255. [Google Scholar] [CrossRef]
- Laketić, S.; Rakin, M.; Momčilović, M.; Ciganović, J.; Veljović, Đ.; Cvijović-Alagić, I. Surface Modifications of Biometallic Commercially Pure Ti and Ti-13Nb-13Zr Alloy by Picosecond Nd:YAG Laser. Int. J. Miner. Metall. Mater. 2021, 28, 285–295. [Google Scholar] [CrossRef]
- Zhang, S.; Zhi, S.; Wang, H.; Guo, J.; Sun, W.; Zhang, L.; Jiang, Y.; Zhang, X.; Jiang, K.; Wu, D. Laser-Assisted Rapid Synthesis of Anatase/Rutile TiO2 Heterojunction with Function-Specified Micro-Zones for the Effective Photo-Oxidation of Sulfamethoxazole. Chem. Eng. J. 2023, 453, 139702. [Google Scholar] [CrossRef]
- Fathi-Hafshejani, P.; Johnson, H.; Ahmadi, Z.; Roach, M.; Shamsaei, N.; Mahjouri-Samani, M. Laser-Assisted Selective and Localized Surface Transformation of Titanium to Anatase, Rutile, and Mixed Phase Nanostructures. J. Laser Appl. 2021, 33, 012014. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band Alignment of Rutile and Anatase TiO2. Nature 2013, 12, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Poyraz, A.S.; Kuo, C.H.; Miao, R.; Meng, Y.; Chen, S.Y.; Jiang, T.; Wenos, C.; Suib, S.L. Crystalline Mixed Phase (Anatase/Rutile) Mesoporous Titanium Dioxides for Visible Light Photocatalytic Activity. Chem. Mater. 2015, 27, 6–17. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.; He, D.; Zhang, J.; Fan, Z.; Xie, T. Interface Junction at Anatase/Rutile in Mixed-Phase TiO2: Formation and Photo-Generated Charge Carriers Properties. Chem. Phys. Lett. 2011, 504, 71–75. [Google Scholar] [CrossRef]
- Wawrzyniak, J.; Karczewski, J.; Kupracz, P.; Grochowska, K.; Załęski, K.; Pshyk, O.; Coy, E.; Bartmański, M.; Szkodo, M.; Siuzdak, K. Laser-Assisted Modification of Titanium Dioxide Nanotubes in a Tilted Mode as Surface Modification and Patterning Strategy. Appl. Surf. Sci. 2020, 508, 145143. [Google Scholar] [CrossRef]
- Mahalakshmi, M.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Photocatalytic Degradation of Carbofuran Using Semiconductor Oxides. J. Hazard. Mater. 2007, 143, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, S.; Liu, H.; Yan, W.; Yang, L.; Yi, B. Photocatalytic Degradation of Carbofuran in TiO2 Aqueous Solution: Kinetics Using Design of Experiments and Mechanism by HPLC/MS/MS. J. Environ. Sci. 2013, 25, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Tomašević, A.; Mijin, D.; Marinković, A.; Radišić, M.; Prlainović, N.; Đurović-Pejčev, R.; Gašić, S. The Photocatalytic Degradation of Carbofuran and Furadan 35-ST: The Influence of Inert Ingredients. Environ. Sci. Pollut. Res. 2017, 24, 13808–13822. [Google Scholar] [CrossRef]
- Mishra, S.; Zhang, W.; Lin, Z.; Pang, S.; Huang, Y.; Bhatt, P.; Chen, S. Carbofuran Toxicity and Its Microbial Degradation in Contaminated Environments. Chemosphere 2020, 259, 127419. [Google Scholar] [CrossRef] [PubMed]
- Luís, A.M.; Neves, M.C.; Mendonça, M.H.; Monteiro, O.C. Influence of Calcination Parameters on the TiO2 Photocatalytic Properties. Mater. Chem. Phys. 2011, 125, 20–25. [Google Scholar] [CrossRef]
- Thangavel, P.; Karuppanan, S.; Muthusamy Poomalai, P.; Sakthivel, A.; Nandagopalan, G.; Bellucci, S. Effect of Chelating Agents on the Structural, Optical, and Dye-Degradation Properties of Tungsten Oxide Nanoparticles. Photonics 2022, 9, 849. [Google Scholar] [CrossRef]
- Rung, S.; Barth, J.; Hellmann, R. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films. Micromachines 2014, 5, 943–953. [Google Scholar] [CrossRef]
- Hill, M.; Wagenaars, E. Modelling of Plasma Temperatures and Densities in Laser Ablation Plumes of Different Metals. Photonics 2022, 9, 937. [Google Scholar] [CrossRef]
- Haryński, Ł.; Grochowska, K.; Karczewski, J.; Ryl, J.; Siuzdak, K. Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 3225–3235. [Google Scholar] [CrossRef]
- Zanatta, A.R. A Fast-Reliable Methodology to Estimate the Concentration of Rutile or Anatase Phases of TiO2. AIP Adv. 2017, 7, 075201. [Google Scholar] [CrossRef]
- An, X.; Hu, C.; Liu, H.; Qu, J. Hierarchical Nanotubular Anatase/Rutile/TiO2(B) Heterophase Junction with Oxygen Vacancies for Enhanced Photocatalytic H2 Production. Langmuir 2018, 34, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem.-Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Li, X.; Jiang, L.; Ran, P.; Wang, H.; Chen, X.; Xu, C.; Tian, M.; Wang, S.; Zhang, J.; et al. Femtosecond Laser Mediated Fabrication of Micro/Nanostructured TiO2−x Photoelectrodes: Hierarchical Nanotubes Array with Oxygen Vacancies and Their Photocatalysis Properties. Appl. Catal. B Environ. 2020, 277, 119231. [Google Scholar] [CrossRef]
- Kuang, J.; Xing, Z.; Yin, J.; Li, Z.; Tan, S.; Li, M.; Jiang, J.; Zhu, Q.; Zhou, W. Ti3+ Self-Doped Rutile/Anatase/TiO2(B) Mixed-Crystal Tri-Phase Heterojunctions as Effective Visible-Light-Driven Photocatalysts. Arab. J. Chem. 2020, 13, 2568–2578. [Google Scholar] [CrossRef]
- Kowalski, D.; Kim, D.; Schmuki, P. TiO2 Nanotubes, Nanochannels and Mesosponge: Self-Organized Formation and Applications. Nano Today 2013, 8, 235–264. [Google Scholar] [CrossRef]
- Xiong, L.B.; Li, J.L.; Yang, B.; Yu, Y. Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. J. Nanomater. 2012, 2012, 9. [Google Scholar] [CrossRef]
- Chahrour, K.M.; Yam, F.K.; Samuel, J.J.; Abdalrheem, R.; Beh, K.P.; Lim, H.S. Controlled Synthesis of Vertically Aligned Honeycomb TiO2 Nanotube Arrays: Effect of High-Temperature Annealing on Physical Properties. Appl. Phys. A Mater. Sci. Process. 2019, 125, 440. [Google Scholar] [CrossRef]
- Wang, W.K.; Chen, J.J.; Zhang, X.; Huang, Y.X.; Li, W.W.; Yu, H.Q. Self-Induced Synthesis of Phase-Junction TiO2 with a Tailored Rutile to Anatase Ratio below Phase Transition Temperature. Sci. Rep. 2016, 6, 20491. [Google Scholar] [CrossRef] [PubMed]
- Ullattil, S.G.; Abdel-Wahab, A. Self-Oxygenated Anatase-Rutile Phase Junction: Ensuring the Availability of Sufficient Surface Charges for Photocatalysis. New J. Chem. 2020, 44, 5513–5518. [Google Scholar] [CrossRef]
- Atwan, A.A.; Elmehasseb, I.M.; Talha, N.; El-Kemary, M. Parameters Affecting Carbofuran Photocatalytic Degradation in Water Using ZnO Nanoparticles. J. Chin. Chem. Soc. 2020, 67, 1833–1842. [Google Scholar] [CrossRef]
- Kovačević, M.; Živković, S.; Ognjanović, M.; Momčilović, M.; Relić, D.; Vasić Anićijević, D. In Silico Guided Design of Metal/Semiconductor Photocatalysts: A Case of Cu-Modified TiO2 for Ciprofloxacin Degradation. Materials 2023, 16, 5708. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Alvarez, B.; Torres-Palma, R.A.; Peñuela, G. Solar Photocatalitycal Treatment of Carbofuran at Lab and Pilot Scale: Effect of Classical Parameters, Evaluation of the Toxicity and Analysis of Organic by-Products. J. Hazard. Mater. 2011, 191, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Vishnuganth, M.A.; Remya, N.; Kumar, M.; Selvaraju, N. Carbofuran Removal in Continuous-Photocatalytic Reactor: Reactor Optimization, Rate-Constant Determination and Carbofuran Degradation Pathway Analysis. J. Environ. Sci. Heal.-Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Abdelhaleem, A.; Chu, W. Insights into Peroxymonosulfate Activation for Carbofuran Degradation under Visible LED via a Double-Component Photocatalyst of Fe (III) Impregnated N-Doped TiO2. Chemosphere 2019, 237, 124487. [Google Scholar] [CrossRef] [PubMed]
- Vishnuganth, M.A.; Remya, N.; Kumar, M.; Selvaraju, N. Photocatalytic Degradation of Carbofuran by TiO2-Coated Activated Carbon: Model for Kinetic, Electrical Energy per Order and Economic Analysis. J. Environ. Manag. 2016, 181, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, D.; Chen, Z.; Yang, L.; Zheng, L.; Wei, Z.; Ma, T.; Zhang, J.; Luo, Y. Oxygen Vacancy/Ti3+ Engineered TiO2 Nanotube Arrays Prepared by in-Situ Exfoliation with H2 Bubbles: A Visible-Light-Driven Self-Supporting Photocatalyst for Detoxfication of Chloraphenicol. J. Environ. Chem. Eng. 2021, 9, 106670. [Google Scholar] [CrossRef]
- Huang, T.; Lu, J.; Xiao, R.; Wu, Q.; Yang, W. Enhanced Photocatalytic Properties of Hierarchical Three-Dimensional TiO2 Grown on Femtosecond Laser Structured Titanium Substrate. Appl. Surf. Sci. 2017, 403, 584–589. [Google Scholar] [CrossRef]
- Ma, Y.S.; Kumar, M.; Lin, J.G. Degradation of Carbofuran-Contaminated Water by the Fenton Process. J. Environ. Sci. Health Part A 2009, 44, 914–920. [Google Scholar] [CrossRef]
- Bachman, J.; Patterson, H.H. Photodecomposition of the Carbamate Pesticide Carbofuran: Kinetics and the Influence of Dissolved Organic Matter. Environ. Sci. Technol. 1999, 33, 874–881. [Google Scholar] [CrossRef]
- Katsumata, H.; Matsuba, K.; Kaneco, S.; Suzuki, T.; Ohta, K.; Yobiko, Y. Degradation of Carbofuran in Aqueous Solution by Fe(III) Aquacomplexes as Effective Photocatalysts. J. Photochem. Photobiol. A Chem. 2005, 170, 239–245. [Google Scholar] [CrossRef]
- Ines, M.; Paolo, P.; Roberto, F.; Mohamed, S. Experimental Studies on the Effect of Using Phase Change Material in a Salinity-Gradient Solar Pond under a Solar Simulator. Sol. Energy 2019, 186, 335–346. [Google Scholar] [CrossRef]
Serial Numbers | Photocatalyst | Catalyst Concentration. | Light Source | CBF Concentration | Degradation/Time | References |
---|---|---|---|---|---|---|
1. | TiO2 | 1.43 g/L | Sunlight | 55 mg/L | 100%/420 min | [54] |
2. | GAC-TiO2 + H2O2 | 5 mg/L | UV | 50 mg/L | 100%/68 min | [55] |
3. | FeNT + PMS | 0.5 g/L | Vis LED | 0.015 mM | 100%/7 min | [56] |
4. | GAC-TiO2 | 5 mg/L | UV | 50 mg/L | 100%/90 min | [57] |
5 mg/L | 100 mg/L | 100%/120 min | ||||
5. | TiO2 | / | Sunlight | 4 mg/L | 85.1%/360 min | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tošić, M.; Rajić, V.; Pjević, D.; Stojadinović, S.; Krstulović, N.; Dimitrijević-Branković, S.; Momčilović, M. Synergy of Nd:YAG Picosecond Pulsed Laser Irradiation and Electrochemical Anodization in the Formation of TiO2 Nanostructures for the Photocatalytic Degradation of Pesticide Carbofuran. Photonics 2024, 11, 284. https://doi.org/10.3390/photonics11030284
Tošić M, Rajić V, Pjević D, Stojadinović S, Krstulović N, Dimitrijević-Branković S, Momčilović M. Synergy of Nd:YAG Picosecond Pulsed Laser Irradiation and Electrochemical Anodization in the Formation of TiO2 Nanostructures for the Photocatalytic Degradation of Pesticide Carbofuran. Photonics. 2024; 11(3):284. https://doi.org/10.3390/photonics11030284
Chicago/Turabian StyleTošić, Miloš, Vladimir Rajić, Dejan Pjević, Stevan Stojadinović, Nikša Krstulović, Suzana Dimitrijević-Branković, and Miloš Momčilović. 2024. "Synergy of Nd:YAG Picosecond Pulsed Laser Irradiation and Electrochemical Anodization in the Formation of TiO2 Nanostructures for the Photocatalytic Degradation of Pesticide Carbofuran" Photonics 11, no. 3: 284. https://doi.org/10.3390/photonics11030284
APA StyleTošić, M., Rajić, V., Pjević, D., Stojadinović, S., Krstulović, N., Dimitrijević-Branković, S., & Momčilović, M. (2024). Synergy of Nd:YAG Picosecond Pulsed Laser Irradiation and Electrochemical Anodization in the Formation of TiO2 Nanostructures for the Photocatalytic Degradation of Pesticide Carbofuran. Photonics, 11(3), 284. https://doi.org/10.3390/photonics11030284