Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm
Abstract
1. Introduction
2. Design and Simulations
3. Chip Fabrication
4. Chip Characterization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raval, M.; Yaacobi, A.; Watts, M.R. Integrated Visible Light Phased Array System for Autostereoscopic Image Projection. Opt. Lett. 2018, 43, 3678–3681. [Google Scholar] [CrossRef]
- Chul Shin, M.; Mohanty, A.; Watson, K.; Bhatt, G.R.; Phare, C.T.; Miller, S.A.; Zadka, M.; Lee, B.S.; Ji, X.; Datta, I.; et al. Chip-Scale Blue Light Phased Array. Opt. Lett. 2020, 45, 1934–1937. [Google Scholar] [CrossRef]
- Sipahigil, A.; Evans, R.E.; Sukachev, D.D.; Burek, M.J.; Borregaard, J.; Bhaskar, M.K.; Nguyen, C.T.; Pacheco, J.L.; Atikian, H.A.; Meuwly, C.; et al. An Integrated Diamond Nanophotonics Platform for Quantum-Optical Networks. Science (1979) 2016, 354, 847–850. [Google Scholar] [CrossRef]
- Mehta, K.K.; Bruzewicz, C.D.; McConnell, R.; Ram, R.J.; Sage, J.M.; Chiaverini, J. Integrated Optical Addressing of an Ion Qubit. Nat. Nanotechnol. 2016, 11, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-Compatible Platforms Based on Silicon Nitride and Hydex for Nonlinear Optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.H.P.; Sun, X.; Schuck, C.; Fong, K.Y.; Tang, H.X. Aluminum Nitride as a New Material for Chip-Scale Optomechanics and Nonlinear Optics. New J. Phys. 2012, 14, 095014. [Google Scholar] [CrossRef]
- Armani, A.M.; Kulkarni, R.P.; Fraser, S.E.; Flagan, R.C.; Vahala, K.J. Label-Free, Single-Molecule Detection with Optical Microcavities. Science (1979) 2007, 317, 783–787. [Google Scholar] [CrossRef]
- Zhu, J.; Ozdemir, S.K.; Xiao, Y.-F.; Li, L.; He, L.; Chen, D.-R.; Yang, L. On-Chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultrahigh-Q Microresonator. Nat. Photonics 2010, 4, 46–49. [Google Scholar] [CrossRef]
- Hoffman, L.; Subramanian, A.; Helin, P.; Bois, B.D.; Baets, R.; Van Dorpe, P.; Gielen, G.; Puers, R.; Braeken, D. Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Mohanty, A.; Li, Q.; Tadayon, M.A.; Roberts, S.P.; Bhatt, G.R.; Shim, E.; Ji, X.; Cardenas, J.; Miller, S.A.; Kepecs, A.; et al. Reconfigurable Nanophotonic Silicon Probes for Sub-Millisecond Deep-Brain Optical Stimulation. Nat. Biomed. Eng. 2020, 4, 223–231. [Google Scholar] [CrossRef]
- Liang, G.; Huang, H.; Mohanty, A.; Shin, M.C.; Ji, X.; Carter, M.J.; Shrestha, S.; Lipson, M.; Yu, N. Robust, Efficient, Micrometre-Scale Phase Modulators at Visible Wavelengths. Nat. Photonics 2021, 15, 908–913. [Google Scholar] [CrossRef]
- Tong, W.; Yang, E.; Pang, Y.; Yang, H.; Qian, X.; Yang, R.; Hu, B.; Dong, J.; Zhang, X. An Efficient, Fast-Responding, Low-Loss Thermo-Optic Phase Shifter Based on a Hydrogen-Doped Indium Oxide Microheater. Laser Photon Rev. 2023, 17, 2201032. [Google Scholar] [CrossRef]
- Romero-García, S.; Merget, F.; Zhong, F.; Finkelstein, H.; Witzens, J. Silicon Nitride CMOS-Compatible Platform for Integrated Photonics Applications at Visible Wavelengths. Opt. Express 2013, 21, 14036. [Google Scholar] [CrossRef]
- Shim, E.; Chen, Y.; Masmanidis, S.; Li, M. Multisite Silicon Neural Probes with Integrated Silicon Nitride Waveguides and Gratings for Optogenetic Applications. Sci. Rep. 2016, 6, 22693. [Google Scholar] [CrossRef] [PubMed]
- Poulton, C.V.; Byrd, M.J.; Raval, M.; Su, Z.; Li, N.; Timurdogan, E.; Coolbaugh, D.; Vermeulen, D.; Watts, M.R. Large-Scale Silicon Nitride Nanophotonic Phased Arrays at Infrared and Visible Wavelengths. Opt. Lett. 2017, 42, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Shah Hosseini, E.; Yegnanarayanan, S.; Atabaki, A.H.; Soltani, M.; Adibi, A. High Quality Planar Silicon Nitride Microdisk Resonators for Integrated Photonics in the Visible Wavelength Range. Opt. Express 2009, 17, 14543. [Google Scholar] [CrossRef]
- Sacher, W.D.; Luo, X.; Yang, Y.; Chen, F.-D.; Lordello, T.; Mak, J.C.C.; Liu, X.; Hu, T.; Xue, T.; Guo-Qiang Lo, P.; et al. Visible-Light Silicon Nitride Waveguide Devices and Implantable Neurophotonic Probes on Thinned 200 mm Silicon Wafers. Opt. Express 2019, 27, 37400. [Google Scholar] [CrossRef]
- Gorin, A.; Jaouad, A.; Grondin, E.; Aimez, V.; Charette, P. Fabrication of Silicon Nitride Waveguides for Visible-Light Using PECVD: A Study of the Effect of Plasma Frequency on Optical Properties. Opt. Express 2008, 16, 13509. [Google Scholar] [CrossRef]
- Subramanian, A.Z.; Neutens, P.; Dhakal, A.; Jansen, R.; Claes, T.; Rottenberg, X.; Peyskens, F.; Selvaraja, S.; Helin, P.; Dubois, B.; et al. Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 Nm Wavelength Window Fabricated within a CMOS Pilot Line. IEEE Photonics J. 2013, 5, 2202809. [Google Scholar] [CrossRef]
- Lanzio, V.; Telian, G.; Koshelev, A.; Micheletti, P.; Presti, G.; D’Arpa, E.; De Martino, P.; Lorenzon, M.; Denes, P.; West, M.; et al. Small Footprint Optoelectrodes Using Ring Resonators for Passive Light Localization. Microsyst. Nanoeng. 2021, 7, 003. [Google Scholar] [CrossRef]
- Lu, T.-J.; Fanto, M.; Choi, H.; Thomas, P.; Steidle, J.; Mouradian, S.; Kong, W.; Zhu, D.; Moon, H.; Berggren, K.; et al. Aluminum Nitride Integrated Photonics Platform for the Ultraviolet to Visible Spectrum. Opt. Express 2018, 26, 11147–11160. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.H.P.; Tang, H.X. Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing. Nano Lett. 2012, 12, 3562. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Vučković, J. Photonic Crystal Cavities in Silicon Dioxide. Appl. Phys. Lett. 2010, 96, 031107. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, D.Y.; Yang, Q.-F.; Shen, B.; Wang, H.; Yang, K.Y.; Lai, Y.-H.; Yi, X.; Li, X.; Vahala, K. Towards Visible Soliton Microcomb Generation. Nat. Commun. 2017, 8, 1295. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Goddard, L.L. Measurements of the Refractive Indices and Thermo-Optic Coefficients of Si3N4 and SiOx Using Microring Resonances. Opt. Lett. 2013, 38, 3878–3881. [Google Scholar] [CrossRef]
- Yong, Z.; Chen, H.; Luo, X.; Govdeli, A.; Chua, H.; Azadeh, S.S.; Stalmashonak, A.; Lo, G.-Q.; Poon, J.K.S.; Sacher, W.D. Power-Efficient Silicon Nitride Thermo-Optic Phase Shifters for Visible Light. Opt. Express 2022, 30, 7225–7237. [Google Scholar] [CrossRef]
- Yan, S.; Zhu, X.; Frandsen, L.H.; Xiao, S.; Mortensen, N.A.; Dong, J.; Ding, Y. Slow-Light-Enhanced Energy Efficiency for Graphene Microheaters on Silicon Photonic Crystal Waveguides. Nat. Commun. 2017, 8, 14411. [Google Scholar] [CrossRef]
- Meng, Y.; Feng, J.; Han, S.; Xu, Z.; Mao, W.; Zhang, T.; Kim, J.S.; Roh, I.; Zhao, Y.; Kim, D.H.; et al. Photonic van Der Waals Integration from 2D Materials to 3D Nanomembranes. Nat. Rev. Mater. 2023, 8, 498–517. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated Lithium Niobate Electro-Optic Modulators Operating at CMOS-Compatible Voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zeng, S.; Lin, S.; Yu, S. Laser Beam Steering of 532 nm Using a Power-Efficient Focal Plane Array. Opt. Lett. 2023, 48, 6400–6403. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Sawaki, Y.; Abe, Y.; Kawasaki, T. Delayed Failure in Silica Glass. J. Mater. Sci. 1982, 17, 102878. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, Y.; Chen, H.; Zhang, Y.; Zhang, F.; Jian, J.; Fan, Z.; Liu, L.; Yang, C.; Zhou, L.; et al. Ultra-Low Temperature Silicon Nitride Photonic Integration Platform. Opt. Express 2016, 24, 1865. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, J.; Zhang, Y.; Wu, Z.; Zeng, S.; Lin, S.; Wu, Z.; Zhou, W.; Chen, Y.; Yu, S. Soliton Frequency Comb Generation in CMOS-Compatible Silicon Nitride Microresonators. Photonics Res. 2022, 10, 1290. [Google Scholar] [CrossRef]
λ (nm) | Structure | Pπ (mW) | IL (dB) |
---|---|---|---|
488 | Conventional [2] | 30 | / |
473 | Conventional [10] | 30 | / |
488 | Micro-ring [11] | 1.8 | 0.61 |
532 | 0.85 | 0.87 | |
445 | Suspended + multipass [26] | 0.78 | 6.1 (MZI) |
488 | 0.93 | 3.6 (MZI) | |
532 | 1.09 | 2.5 (MZI) | |
561 | 1.2 | 4.8 (MZI) | |
532 | Suspended + singlepass [30] | 3.1 | 1 |
532 | Suspended + singlepass [this work] | 0.61 | 0.8 |
Device | Parameters (μm) | Pπ (mW) | σ (108 N/m2) | Δ (nm) |
---|---|---|---|---|
1 | w = 12, d = 8, p = 50 | 3.0 | 1.46 | 2.1 |
2 | w = 12, d = 2, p = 50 | 1.4 | 1.47 | 3.18 |
3 | w = 8, d = 2, p = 50 | 1.3 | 1.48 | 3.4 |
4 | w = 8, d = 2, p = 80 | 1.2 | 1.46 | 3.47 |
5 | w = 8, d = 2, p = 100 | 0.76 | 1.46 | 5.2 |
6 | w = 8, d = 2, p = 150 | 0.54 | 1.54 | 10.6 |
7 | w = 8, p = 300 | 0.27 | 1.60 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Lin, S.; Yu, S.; Zhang, Y. Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm. Photonics 2024, 11, 213. https://doi.org/10.3390/photonics11030213
Wu Z, Lin S, Yu S, Zhang Y. Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm. Photonics. 2024; 11(3):213. https://doi.org/10.3390/photonics11030213
Chicago/Turabian StyleWu, Zhaoyang, Shuqing Lin, Siyuan Yu, and Yanfeng Zhang. 2024. "Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm" Photonics 11, no. 3: 213. https://doi.org/10.3390/photonics11030213
APA StyleWu, Z., Lin, S., Yu, S., & Zhang, Y. (2024). Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm. Photonics, 11(3), 213. https://doi.org/10.3390/photonics11030213