Gaussian-Shaped Free-Space Optical Beam Intensity Estimation in Detector Arrays
Abstract
:1. Introduction
2. System Modeling
Detection of the Optical Signal
3. An Estimator for the Beam’s Parameter
3.1. Maximum Likelihood Estimator
3.2. CRLB of the ML Estimator
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, M.Z.; Hossan, M.T.; Islam, A.; Jang, Y.M. A Comparative Survey of Optical Wireless Technologies: Architectures and Applications. IEEE Access 2018, 6, 9819–9840. [Google Scholar] [CrossRef]
- Manor, H.; Arnon, S. Performance of an optical wireless communication system as a function of wavelength. Appl. Opt. 2003, 42, 4285–4294. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Celik, A.; Romdhane, I.; Kaddoum, G.; Eltawil, A.M. A Top-Down Survey on Optical Wireless Communications for the Internet of Things. IEEE Commun. Surv. Tutor. 2022, 25, 1–45. [Google Scholar] [CrossRef]
- Walsh, S.M.; Karpathakis, S.F.E.; McCann, A.S.; Dix-Matthews, B.P.; Frost, A.M.; Gozzard, D.R.; Gravestock, C.T.; Schediwy, S.W. Demonstration of 100Gbps coherent free-space optical communications at Leo Tracking Rates. Sci. Rep. 2022, 12, 18345. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.K. Chapter 4—Fundamentals of Free-Space Optical Communications Systems, Optical Channels, Characterization, and Network/Access Technology. In Optical Wireless Communications for Broadband Global Internet Connectivity; Majumdar, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–116. [Google Scholar] [CrossRef]
- Kaur, S. Analysis of inter-satellite free-space optical link performance considering different system parameters. Opto-Electron. Rev. 2019, 27, 10–13. [Google Scholar] [CrossRef]
- Jaber, M.; Imran, M.A.; Tafazolli, R.; Tukmanov, A. 5G Backhaul Challenges and Emerging Research Directions: A Survey. IEEE Access 2016, 4, 1743–1766. [Google Scholar] [CrossRef] [Green Version]
- Ghassemlooy, Z.; Le Minh, H.; Rajbhandari, S.; Perez, J.; Ijaz, M. Performance Analysis of Ethernet/Fast-Ethernet Free Space Optical Communications in a Controlled Weak Turbulence Condition. J. Light. Technol. 2012, 30, 2188–2194. [Google Scholar] [CrossRef]
- Bashir, M.S.; Alouini, M.S. Signal Acquisition with Photon-Counting Detector Arrays in Free-Space Optical Communications. IEEE Trans. Wirel. Commun. 2020, 19, 2181–2195. [Google Scholar] [CrossRef] [Green Version]
- Mendenhall, J.A.; Candell, L.M.; Hopman, P.I.; Zogbi, G.; Boroson, D.M.; Caplan, D.O.; Digenis, C.J.; Hearn, D.R.; Shoup, R.C. Design of an Optical Photon Counting Array Receiver System for Deep-Space Communications. Proc. IEEE 2007, 95, 2059–2069. [Google Scholar] [CrossRef]
- Bashir, M.S.; Bell, M.R. The Impact of Optical Beam Position Estimation on the Probability of Error in Free-Space Optical Communications. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1319–1333. [Google Scholar] [CrossRef]
- Hugot, E.; Jahn, W.; Chambion, B.; Moulin, G.; Nikitushkina, L.; Gaschet, C.; Henry, D.; Getin, S.; Ferrari, M.; Gaeremynck, Y. Flexible focal plane arrays for UVOIR wide field instrumentation. In Proceedings of the High Energy, Optical, and Infrared Detectors for Astronomy VII, Astronomical Telescopes + Instrumentation, SPIE, Biarritz, France, 18–21 October 2016; Volume 9915, p. 1H. [Google Scholar] [CrossRef] [Green Version]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Hemmati, H. Deep Space Optical Communications; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 11. [Google Scholar]
- Snyder, D.L.; Miller, M.I. Point and Counting Processes: Introduction and Preliminaries. In Random Point Processes in Time and Space; Springer: New York, NY, USA, 1991; pp. 1–40. [Google Scholar] [CrossRef]
- Bashir, M.S.; Bell, M.R. Optical beam position estimation in free-space optical communication. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2896–2905. [Google Scholar] [CrossRef]
- Shiu, D.S.; Kahn, J. Differential pulse-position modulation for power-efficient optical communication. IEEE Trans. Commun. 1999, 47, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- Audeh, M.; Kahn, J. Performance evaluation of baseband OOK for wireless indoor infrared LAN’s operating at 100 Mb/s. IEEE Trans. Commun. 1995, 43, 2085–2094. [Google Scholar] [CrossRef]
- Bashir, M.S. Free-space optical communications with detector arrays: A mathematical analysis. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 1420–1429. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of Statistical Signal Processing; Prentice Hall PTR: Hoboken, NJ, USA, 1993. [Google Scholar]
- Bashir, M.S.; Alouini, M.S. Free-Space Optical MISO Communications with an Array of Detectors. IEEE Open J. Commun. Soc. 2020, 1, 1765–1780. [Google Scholar] [CrossRef]
- Bashir, M.S.; Tsai, M.C.; Alouini, M.S. Cramér–Rao Bounds for Beam Tracking with Photon Counting Detector Arrays in Free-Space Optical Communications. IEEE Open J. Commun. Soc. 2021, 2, 1065–1081. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umair, M.A.; Khalid, H.; Sajid, S.M.; Nistazakis, H.E. Gaussian-Shaped Free-Space Optical Beam Intensity Estimation in Detector Arrays. Photonics 2023, 10, 930. https://doi.org/10.3390/photonics10080930
Umair MA, Khalid H, Sajid SM, Nistazakis HE. Gaussian-Shaped Free-Space Optical Beam Intensity Estimation in Detector Arrays. Photonics. 2023; 10(8):930. https://doi.org/10.3390/photonics10080930
Chicago/Turabian StyleUmair, Muhammad Ali, Hira Khalid, Sheikh Muhammad Sajid, and Hector E. Nistazakis. 2023. "Gaussian-Shaped Free-Space Optical Beam Intensity Estimation in Detector Arrays" Photonics 10, no. 8: 930. https://doi.org/10.3390/photonics10080930
APA StyleUmair, M. A., Khalid, H., Sajid, S. M., & Nistazakis, H. E. (2023). Gaussian-Shaped Free-Space Optical Beam Intensity Estimation in Detector Arrays. Photonics, 10(8), 930. https://doi.org/10.3390/photonics10080930