Vanadium Dioxide-Based Terahertz Metamaterials for Non-Contact Temperature Sensor
Abstract
1. Introduction
2. Experiments and Structural Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Root, W.; Bechtold, T.; Pham, T. Textile-integrated thermocouples for temperature measurement. Materials 2020, 13, 626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.K.; Liu, Z.J.; Lei, J.M.; Chen, L.T.; Li, L.; Zhao, N.; Fang, X.D.; Ruan, Y.; Tian, B.; Zhao, L.B. Flexible thin film thermocouples: From structure, material, fabrication to application. Iscience 2023, 26, 107303. [Google Scholar] [CrossRef] [PubMed]
- Bodic, M.Z.; Aleksic, S.O.; Rajs, V.M.; Damnjanovic, M.S.; Kisic, M.G. Thermally coupled NTC chip thermistors: Their properties and applications. Sensors 2024, 24, 3547. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Shen, C.; Qiu, T. Research progress of BaTiO3-system PTC thermistor materials. Electron. Compon. Mater. 2010, 29, 69–71. [Google Scholar]
- Chen, Z.H.; Huang, P.H.; Wang, C.P.; Chih, Y.D.; Lin, C.J.; King, Y.C. Embedded near-infrared sensor with tunable sensitivity for nanoscale CMOS technologies. IEEE Sens. J. 2019, 19, 933–939. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef]
- Zhong, S.C. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2019, 14, 273–281. [Google Scholar] [CrossRef]
- Hafez, H.A.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T. Intense terahertz radiation and their applications. J. Opt. 2016, 18, 093004. [Google Scholar] [CrossRef]
- Xu, W.D.; Xie, L.J.; Ying, Y.B. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef]
- Ajayan, J.; Sreejith, S.; Manikandan, M.; Lai, W.C.; Saha, S. Terahertz sensors for next generation biomedical and other industrial electronics applications: A critical review. Sens. Actuators A Phys. 2024, 369, 115169. [Google Scholar] [CrossRef]
- Sizov, F. THz radiation sensors. Opto-Electron. Rev. 2010, 18, 10–36. [Google Scholar] [CrossRef]
- Huang, Y.X.; Singh, R.; Xie, L.J.; Ying, Y.B. Attenuated Total Reflection for Terahertz Modulation, Sensing, Spectroscopy and Imaging Applications: A Review. Appl. Sci. 2020, 10, 4688. [Google Scholar] [CrossRef]
- Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898. [Google Scholar] [CrossRef]
- Choi, M.; Lee, S.H.; Kim, Y.; Kang, S.B.; Shin, J.; Kwak, M.H.; Kang, K.Y.; Lee, Y.H.; Park, N.; Min, B. A terahertz metamaterial with unnaturally high refractive index. Nature 2011, 470, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507. [Google Scholar] [CrossRef] [PubMed]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Beruete, M.; Jáuregui-López, I. Terahertz Sensing Based on Metasurfaces. Adv. Opt. Mater. 2020, 8, 1900721. [Google Scholar] [CrossRef]
- Kim, H.S.; Cha, S.H.; Roy, B.; Kim, S.; Ahn, Y. Humidity sensing using thz metamaterial with silk protein fibroin. Opt. Express 2018, 26, 33575–33581. [Google Scholar] [CrossRef]
- Degl’Innocenti, R.; Lin, H.Y.; Navarro-Cía, M. Recent progress in terahertz metamaterial modulators. Nanophotonics 2022, 11, 1485–1514. [Google Scholar] [CrossRef]
- Wang, W.J.; Sun, K.X.; Xue, Y.; Lin, J.; Fang, J.K.; Shi, S.N.; Zhang, S.; Shi, Y.P. A review of terahertz metamaterial sensors and their applications. Opt. Commun. 2024, 556, 130266. [Google Scholar] [CrossRef]
- Ma, L.; Shi, W.N.; Fan, F.; Zhang, Z.Y.; Zhang, T.R.; Liu, J.Y.; Wang, X.H.; Chang, S.J. Terahertz polarization sensing, chirality enhancement, and specific binding based on metasurface sensors for biochemical detection: A review Invited. Chin. Opt. Lett. 2023, 21, 18. [Google Scholar]
- Shen, S.L.; Liu, X.D.; Shen, Y.C.; Qu, J.L.; Pickwell-macpherson, E.; Wei, X.B.; Sun, Y.W. Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Opt. Mater. 2022, 10, 2101008. [Google Scholar] [CrossRef]
- An, Y.B.; Fu, T.; Guo, C.Y.; Pei, J.H.; Ouyang, Z.B. Two individual super-bound state modes within band gap with ultra-high-Q factor for potential sensing applications in the terahertz wave band. Sensors 2023, 23, 6737. [Google Scholar] [CrossRef] [PubMed]
- Sang, T.; Mi, Q.; Yang, C.Y.; Zhang, X.H.; Wang, Y.K.; Ren, Y.Z.; Xu, T. Achieving asymmetry parameter-insensitive resonant modes through relative shift-induced quasi-bound states in the continuum. Nanophotonics 2024, 13, 1369–1377. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, C.; Hu, D.L.; Li, D.X.; Hui, X.D.; Zhang, F.; Chen, M.; Mu, X.J. Terahertz biosensing based on bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication. Appl. Phys. Lett. 2019, 115, 143507. [Google Scholar] [CrossRef]
- Liu, Y.W.; Zheng, D.Y.; Feng, Q.X.; Lin, Y.S. Electrothermally controllable terahertz metamaterial for sensing application. Sens. Actuators A-Phys. 2022, 344, 113667. [Google Scholar] [CrossRef]
- Li, W.Y.; Cheng, Y.Z. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt. Commun. 2020, 462, 125265. [Google Scholar] [CrossRef]
- Li, D.; Huang, H.L.; Xia, H.; Zeng, J.P.; Li, H.J.; Xie, D. Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator. Results Phys. 2018, 11, 659–664. [Google Scholar] [CrossRef]
- Sheta, E.M.; Choudhury, P.K.; Ibrahim, A. Pixelated graphene-strontium titanate metamaterial supported tunable dual-band temperature sensor. Opt. Mater. 2021, 118, 111225. [Google Scholar] [CrossRef]
- Keshavarz, A.; Zakery, A. Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial. Appl. Phys. A-Mater. Sci. Process. 2017, 123, 797. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; Qian, H. Tunable terahertz dual-band perfect absorber based on the combined insb resonator structures for temperature sensing. J. Opt. Soc. Am. B-Opt. Phys. 2021, 38, 2638–2644. [Google Scholar] [CrossRef]
- Rong, C.G.; Cai, B.; Cheng, Y.Z.; Chen, F.; Luo, H.; Li, X.C. Dual-band terahertz chiral metasurface absorber with enhanced circular dichroism based on temperature-tunable insb for sensing applications. Phys. Chem. Chem. Phys. 2024, 26, 5579–5588. [Google Scholar] [CrossRef]
- Linyang, G.; Xiaohui, M.; Zhaoqing, C.; Chunlin, X.; Jun, L.; Ran, Z. Tunable a temperature-dependent GST-based metamaterial absorber for switching and sensing applications. J. Mater. Res. Technol-JMRT 2021, 14, 772–779. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Y.Q.; Zhang, Y.P.; Lang, T.T.; Zhu, F.J. High-sensitivity temperature sensor based on the perfect metamaterial absorber in the terahertz band. Photonics 2023, 10, 92. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Chang, X.; Li, J.; Mu, J.; Ma, C.H.; Huang, W.X.; Zhu, H.F.; Liu, Q.; Du, L.H.; Zhong, S.C.; Zhai, Z.H.; et al. Impact of the uniaxial strain on terahertz modulation characteristics in flexible epitaxial VO2 film across the phase transition. Opt. Express 2023, 31, 13243–13254. [Google Scholar] [CrossRef]
- Li, M.; Magdassi, S.; Gao, Y.F.; Long, Y. Hydrothermal synthesis of VO2 polymorphs: Advantages, challenges and prospects for the application of energy efficient smart windows. Small 2017, 13, 1701147. [Google Scholar] [CrossRef]
- Shi, Q.W.; Huang, W.X.; Lu, T.C.; Zhang, Y.X.; Yue, F.; Qiao, S.; Xiao, Y. Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range. Appl. Phys. Lett. 2014, 104, 071903. [Google Scholar] [CrossRef]
- Appasani, B. Temperature tunable seven band terahertz metamaterial absorber using slotted flower-shaped resonator on an insb substrate. Plasmonics 2021, 16, 833–839. [Google Scholar] [CrossRef]
- Karim, H.; Delfin, D.; Chavez, L.A.; Delfin, L.; Martinez, R.; Avila, J.; Rodriguez, C.; Rumpf, R.C.; Love, N.; Lin, Y.R. Metamaterial based passive wireless temperature sensor. Adv. Eng. Mater. 2017, 19, 1600741. [Google Scholar] [CrossRef]
- Peng, H.J.; Wang, X.Y.; Zou, J.H.; Zhang, T.; Gao, F.; Yang, X.Q. A noncontact feed microwave temperature sensor for industry device based on metamaterial. IEEE Sens. J. 2024, 24, 26397–26406. [Google Scholar] [CrossRef]
VO2 Films with Different Thicknesses | Resistivity (S/m) | |
---|---|---|
Room Temperature (25 °C) | 85 °C | |
28 nm | 9.08 | 357.15 |
59 nm | 9.29 | 1564.10 |
86 nm | 10.79 | 6209.23 |
130 nm | 11.17 | 11,518.15 |
Modulating Medium Materials | Working Temperature (K) | Sensitivity | Reference |
---|---|---|---|
Graphene | 397–304 | 0.0271 THz/°C | [30] |
InSb | 260–310 | 0.0219 THz/K | [34] |
InSb | 190–240 | 0.0126 THz/°C | [39] |
Strontium Titanate | 200–400 | 0.00055 THz/K | [28] |
Boron Nitride/Barium Titanate | 296–473 | 0.000000462 THz/°C | [40] |
Metal Thermal Sensing Branch | 1025 | 0.0097 dB/K | [41] |
VO2 | 328–345 | 1.82 dB/°C | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, J.; Gong, Y.; Luo, L.; Shi, Q. Vanadium Dioxide-Based Terahertz Metamaterials for Non-Contact Temperature Sensor. Photonics 2024, 11, 1148. https://doi.org/10.3390/photonics11121148
Leng J, Gong Y, Luo L, Shi Q. Vanadium Dioxide-Based Terahertz Metamaterials for Non-Contact Temperature Sensor. Photonics. 2024; 11(12):1148. https://doi.org/10.3390/photonics11121148
Chicago/Turabian StyleLeng, Jin, Yong Gong, Li Luo, and Qiwu Shi. 2024. "Vanadium Dioxide-Based Terahertz Metamaterials for Non-Contact Temperature Sensor" Photonics 11, no. 12: 1148. https://doi.org/10.3390/photonics11121148
APA StyleLeng, J., Gong, Y., Luo, L., & Shi, Q. (2024). Vanadium Dioxide-Based Terahertz Metamaterials for Non-Contact Temperature Sensor. Photonics, 11(12), 1148. https://doi.org/10.3390/photonics11121148