A Review: Phase Measurement Techniques Based on Metasurfaces
Abstract
:1. Introduction
2. Non-Quantitative Phase Measurement
3. Quantitative Phase Measurement
3.1. Interference Methods
3.2. Non-Interference Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Nederland, 2013. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Greenwood Village, CO, USA, 2005. [Google Scholar]
- Stratton, J.A. Electromagnetic Theory; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 33. [Google Scholar]
- Hecht, E. Optics; Pearson Education India: Bangalore, India, 2012. [Google Scholar]
- Chen, S.; Xue, S.; Zhai, D.; Tie, G. Measurement of freeform optical Surfaces: Trade-off between accuracy and dynamic range. Laser Photonics Rev. 2020, 14, 1900365. [Google Scholar] [CrossRef]
- Chen, S.; Dai, Y.; Zhai, D.; Xiong, Y. Quasi-absolute interferometric testing of cylinders. Opt. Lett. 2022, 47, 2278–2281. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Depeursinge, C.; Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 2018, 12, 578–589. [Google Scholar] [CrossRef]
- Lee, K.; Kim, K.; Jung, J.; Heo, J.; Cho, S.; Lee, S.; Chang, G.; Jo, Y.; Park, H.; Park, Y. Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications. Sensors 2013, 13, 4170–4191. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Zhou, R.; Mir, M.; Babacan, S.D.; Carney, P.S.; Goddard, L.L.; Popescu, G. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 2014, 8, 256–263. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Kandel, M.E.; Rubessa, M.; Wheeler, M.B.; Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 2017, 8, 210. [Google Scholar] [CrossRef]
- Taylor, R.W.; Mahmoodabadi, R.G.; Rauschenberger, V.; Giessl, A.; Schambony, A.; Sandoghdar, V. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 2019, 13, 480–487. [Google Scholar] [CrossRef]
- Tamamitsu, M.; Toda, K.; Horisaki, R.; Ideguchi, T. Quantitative phase imaging with molecular vibrational sensitivity. Opt. Lett. 2019, 44, 3729–3732. [Google Scholar] [CrossRef]
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739–745. [Google Scholar] [CrossRef]
- Sun, J.; Wu, J.; Wu, S.; Goswami, R.; Girardo, S.; Cao, L.; Guck, J.; Koukourakis, N.; Czarske, J.W. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light Sci. Appl. 2022, 11, 204. [Google Scholar] [CrossRef]
- Cotte, Y.; Toy, F.; Jourdain, P.; Pavillon, N.; Boss, D.; Magistretti, P.J.; Marquet, P.; Depeursinge, C. Marker-free phase nanoscopy. Nat. Photonics 2013, 7, 113–117. [Google Scholar] [CrossRef]
- Merola, F.; Memmolo, P.; Miccio, L.; Savoia, R.; Mugnano, M.; Fontana, A.; D′Ippolito, G.; Sardo, A.; Iolascon, A.; Gambale, A.; et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 2016, 6, e16241. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Deng, W.; Chen, S. Intelligence enhancement of the adaptive wavefront interferometer. Opt. Express 2019, 27, 11084–11102. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Chen, S.; Fan, Z.; Zhai, D. Adaptive wavefront interferometry for unknown free-form surfaces. Opt. Express 2018, 26, 21910–21928. [Google Scholar] [CrossRef]
- Lane, R.G.; Tallon, M. Wave-front reconstruction using a Shack-Hartmann sensor. Appl. Opt. 1992, 31, 6902–6908. [Google Scholar] [CrossRef]
- Ragazzoni, R.; Diolaiti, E.; Vernet, E. A pyramid wavefront sensor with no dynamic modulation. Opt. Commun. 2002, 208, 51–60. [Google Scholar] [CrossRef]
- Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 1942, 9, 686–698. [Google Scholar] [CrossRef]
- Zernike, F. How I Discovered Phase Contrast. Science 1955, 121, 345–349. [Google Scholar] [CrossRef]
- Nomarski, G.M. Differential microinterferometer with polarized waves. J. Phys. Radium Paris 1955, 16, 9S. [Google Scholar]
- Fried, D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. 1966, 56, 1372–1379. [Google Scholar] [CrossRef]
- Brown, A.F.; Dunn, G.A. Microinterferometry of the movement of dry matter in fibroblasts. J. Cell Sci. 1989, 92, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Black, A.N.; Nguyen, L.D.; Braverman, B.; Crampton, K.T.; Evans, J.E.; Boyd, R.W. Quantum-enhanced phase imaging without coincidence counting. Optica 2023, 10, 952–958. [Google Scholar] [CrossRef]
- Teague, M.R. Irradiance moments: Their propagation and use for unique retrieval of phase. J. Opt. Soc. Am. 1982, 72, 1199–1209. [Google Scholar] [CrossRef]
- Teague, M.R. Deterministic phase retrieval: A Green’s function solution. J. Opt. Soc. Am. 1983, 73, 1434–1441. [Google Scholar] [CrossRef]
- Zuo, C.; Li, J.; Sun, J.; Fan, Y.; Zhang, J.; Lu, L.; Zhang, R.; Wang, B.; Huang, L.; Chen, Q. Transport of intensity equation: A tutorial. Opt. Lasers Eng. 2020, 135, 106187. [Google Scholar] [CrossRef]
- Bock, M.; Das, S.K.; Fischer, C.; Diehl, M.; Börner, P.; Grunwald, R. Reconfigurable wavefront sensor for ultrashort pulses. Opt. Lett. 2012, 37, 1154–1156. [Google Scholar] [CrossRef]
- Pan, M.; Fu, Y.; Zheng, M.; Chen, H.; Zang, Y.; Duan, H.; Li, Q.; Qiu, M.; Hu, Y. Dielectric metalens for miniaturized imaging systems: Progress and challenges. Light Sci. Appl. 2022, 11, 195. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Huo, P.; Song, M.; Zhu, W.; Zhang, C.; Chen, L.; Lezec, H.J.; Lu, Y.; Agrawal, A.; Xu, T. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 2020, 7, 1171–1172. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Hu, Y.; Lai, J.; Wang, S.; Yang, P.; Li, X.; Duan, H. Broadband polarization-switchable multi-focal noninterleaved metalenses in the visible. Laser Photonics Rev. 2021, 15, 2100198. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.J.; Su, V.C.; Wang, S.; Chen, M.K.; Chung, T.L.; Chen, Y.H.; Kuo, H.Y.; Chen, J.W.; Chen, J.; Huang, Y.T.; et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 2019, 14, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jiang, Y.; Zhang, Y.; Yang, X.; Ou, X.; Li, L.; Kong, X.; Liu, X.; Qiu, C.-W.; Duan, H. Asymptotic dispersion engineering for ultra-broadband meta-optics. Nat. Commun. 2023, 14, 6649. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, X.; Chen, Y.; Liu, Q.; Li, X.; Wang, Y.; Liu, N.; Duan, H. 3D-Integrated metasurfaces for full-colour holography. Light Sci. Appl. 2019, 8, 86. [Google Scholar] [CrossRef]
- So, S.; Kim, J.; Badloe, T.; Lee, C.; Yang, Y.; Kang, H.; Rho, J. Multicolor and 3D Holography Generated by Inverse-Designed Single-Cell Metasurfaces. Adv. Mater. 2023, 35, 2208520. [Google Scholar] [CrossRef]
- Bao, Y.; Ni, J.; Qiu, C.W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater. 2020, 32, 1905659. [Google Scholar] [CrossRef]
- Wang, D.; Liu, F.; Liu, T.; Sun, S.; He, Q.; Zhou, L. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl. 2021, 10, 67. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.; Kravchenko, I.I.; Valentine, J. Flat optics for image differentiation. Nat. Photonics 2020, 14, 316–323. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Y.; Ou, X.; Li, X.; Lai, J.; Liu, N.; Cheng, X.; Pan, A.; Duan, H. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl. 2022, 11, 158. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, Z.; Xie, P.; Cai, D.; Meng, F.; Wang, C.; Wu, Q.; Liu, J.; Burokur, S.N.; Hu, G. Metasurface-Based Optical Logic Operators Driven by Diffractive Neural Networks. Adv. Mater. 2024, 36, 2308993. [Google Scholar] [CrossRef]
- Zernike, F. Diffraction theory of the knife-edge test and its improved form, the phase-contrast method. Mon. Not. R. Astron. Soc. 1934, 94, 377–384. [Google Scholar] [CrossRef]
- Fürhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 2005, 13, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; Jesacher, A.; Fürhapter, S.; Bernet, S.; Ritsch-Marte, M. Upgrading a microscope with a spiral phase plate. J. Microsc. 2008, 230, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, G.; Sung, J.; Jang, J.; Lee, B. Spiral Metalens for Phase Contrast Imaging. Adv. Funct. Mater. 2022, 32, 2106050. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, P.; Huo, P.; Liu, M.; Ren, Y.; Zhang, S.; Zhou, Q.; Wang, Y.; Lu, Y.-Q.; Xu, T. Dielectric Metasurface for Synchronously Spiral Phase Contrast and Bright-Field Imaging. Nano Lett. 2023, 23, 2991–2997. [Google Scholar] [CrossRef]
- Wesemann, L.; Rickett, J.; Song, J.C.; Lou, J.; Hinde, E.; Davis, T.J.; Roberts, A. Nanophotonics enhanced coverslip for phase imaging in biology. Light Sci. Appl. 2021, 10, 98. [Google Scholar] [CrossRef]
- Wesemann, L.; Rickett, J.; Davis, T.J.; Roberts, A. Real-time phase imaging with an asymmetric transfer function metasurface. ACS Photonics 2022, 9, 1803–1807. [Google Scholar] [CrossRef]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef]
- Goodman, J.W. Digital image formation from electronically detected holograms. In Proceedings of SPIE, San Jose, CA, USA, 1 July 1967; Volume 0010, pp. 176–181. [Google Scholar]
- Bouchal, P.; Dvořák, P.; Babocký, J.; Bouchal, Z.; Ligmajer, F.; Hrtoň, M.; Křápek, V.; Faßbender, A.; Linden, S.; Chmelík, R.; et al. High-resolution quantitative phase imaging of plasmonic metasurfaces with sensitivity down to a single nanoantenna. Nano Lett. 2019, 19, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Sardana, J.; Devinder, S.; Zhu, W.; Agrawal, A.; Joseph, J. Dielectric Metasurface Enabled Compact, Single-Shot Digital Holography for Quantitative Phase Imaging. Nano Lett. 2023, 23, 11112–11119. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Arbabi, E.; Kamali, S.M.; Faraji-Dana, M.; Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics 2020, 14, 109–114. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Q.; Zhao, J.; Posner, C.; Lei, M.; Chen, G.; Zhang, J.; Liu, Z. Fourier optical spin splitting microscopy. Phys. Rev. Lett. 2022, 129, 020801. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, J.; Chen, X.; Zhao, J.; Lei, M.; Chen, G.; Lo, Y.H.; Liu, Z. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 2023, 10, 619–625. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; He, S.; Wang, R.; Luo, H. Computing Metasurfaces Enabled Broad-Band Vectorial Differential Interference Contrast Microscopy. ACS Photonics 2023, 10, 2201–2207. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Zhao, F.; Zhang, Y.; Wen, S.; Chai, H.; Gao, Y.; Wang, W.; Cao, L.; Yang, Y. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci. Adv. 2024, 10, eadl0501. [Google Scholar] [CrossRef]
- Zhou, J.; Qian, H.; Zhao, J.; Tang, M.; Wu, Q.; Lei, M.; Luo, H.; Wen, S.; Chen, S.; Liu, Z. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev. 2021, 8, nwaa176. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wang, J.; Liu, X.; Hao, H.; Tan, Y.S.; Zhang, Y.; Zhang, H.; Ding, X.; Zhao, W.; et al. Single-shot isotropic differential interference contrast microscopy. Nat. Commun. 2023, 14, 2063. [Google Scholar] [CrossRef]
- Engay, E.; Huo, D.; Malureanu, R.; Bunea, A.-I.; Lavrinenko, A. Polarization-Dependent All-Dielectric Metasurface for Single-Shot Quantitative Phase Imaging. Nano Lett. 2021, 21, 3820–3826. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.; Ullah, N.; Geng, G.; Li, J.; Li, X.; Wang, Y.; Huang, L. Single-shot phase retrieval based on anisotropic metasurface. Appl. Phys. Lett. 2022, 120, 161702. [Google Scholar] [CrossRef]
- Wang, J.; Yu, R.; Ye, X.; Sun, J.; Li, J.; Huang, C.; Xiao, X.; Ji, J.; Shen, W.; Tie, Z.; et al. Quantitative phase imaging with a compact meta-microscope. npj Nanophotonics 2024, 1, 4. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Li, Y.; Tian, L.; Paiella, R. Asymmetric metasurface photodetectors for single-shot quantitative phase imaging. Nanophotonics 2023, 12, 3519–3528. [Google Scholar] [CrossRef]
- Ji, A.; Song, J.H.; Li, Q.T.; Xu, F.; Tsai, C.-T.; Tiberio, R.C.; Cui, B.; Lalanne, P.; Kik, P.G.; Miller, D.A.B.; et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. 2022, 13, 7848. [Google Scholar] [CrossRef]
- Go, G.H.; Lee, D.; Oh, J.; Song, G.; Lee, D.; Jang, M. Meta Shack–Hartmann wavefront sensor with large sampling density and large angular field of view: Phase imaging of complex objects. Light Sci. Appl. 2024, 13, 187. [Google Scholar] [CrossRef]
- Soldevila, F.; Durán, V.; Clemente, P.; Lancis, J.; Tajahuerce, E. Phase imaging by spatial wavefront sampling. Optica 2018, 5, 164–174. [Google Scholar] [CrossRef]
- Hu, Y.; Cai, Y.; Wei, W.; Li, L.; Wang, H.; Wang, S.; Yang, P.; Jia, H.; Duan, H. Pitch-Switchable Metalens Array for Wavefront Profiling at Multiwavelength. Adv. Opt. Mater. 2024, 12, 2302934. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Wang, Y.; Feng, X.; Zhao, M.; Wan, Z.; Zhu, L.; Liu, J.; Huang, Y.; Xia, J.; et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 2018, 9, 4607. [Google Scholar] [CrossRef]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351. [Google Scholar] [CrossRef]
- Qiu, X.; Xie, L.; Liu, X.; Luo, L.; Li, Z.; Zhang, Z.; Du, J. Precision phase estimation based on weak-value amplification. Appl. Phys. Lett. 2017, 110, 071105. [Google Scholar] [CrossRef]
- Luo, W.; Yang, Q.; Wang, Y.; Liu, J.; Luo, H. Phase and amplitude reconstruction by weak measurement based on metasurface. Appl. Phys. Lett. 2024, 124, 211702. [Google Scholar] [CrossRef]
- Kwon, H.; Arbabi, E.; Kamali, S.M.; Faraji-Dana, M.; Faraon, A. Computational complex optical field imaging using a designed metasurface diffuser. Optica 2018, 5, 924–931. [Google Scholar] [CrossRef]
Technique | Quantitative (Yes or No) | Isotropic (Yes or No) | Optical System | Accuracy/Resolution | Ref. |
---|---|---|---|---|---|
Interferometry | |||||
Holography interferometry | ✓ | - | 4f | 0.15 rad | [56] |
✓ | - | Single layer | - | [57] | |
Shearing interferometry | ✓ | O | Two layer | 2.76 μm | [58] |
✓ | O | 4f | - | [59] | |
✓ | O | Two layer | - | [60] | |
✓ | ✓ | Mach-Zehnder | 2 μm | [61] | |
✓ | ✓ | Single layer | 5.52 μm | [62] | |
✓ | ✓ | Single layer | 0.775 μm | [64] | |
Non-interferometry | |||||
Vortex phase | O | ✓ | 4f | 3.11 μm | [49] |
O | ✓ | Single layer | 0.78 μm | [50] | |
O | ✓ | Single layer | 2.2 μm | [51] | |
Asymmetric OTF | O | O | Single layer | - | [52,53] |
✓ | O | Single layer | 10 mrad | [68] | |
✓ | O | Single layer | 0.063 rad | [69] | |
TIE | ✓ | – | Single layer | 0.1 rad | [67] |
Shack–Hartmann wavefront sensor | ✓ | – | Single layer | 0.1λ | [71] |
Weak measurement | ✓ | – | 4f | - | [76] |
SSM | ✓ | – | Single layer | - | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Hu, Y.; Chen, S. A Review: Phase Measurement Techniques Based on Metasurfaces. Photonics 2024, 11, 996. https://doi.org/10.3390/photonics11110996
Zhao Z, Hu Y, Chen S. A Review: Phase Measurement Techniques Based on Metasurfaces. Photonics. 2024; 11(11):996. https://doi.org/10.3390/photonics11110996
Chicago/Turabian StyleZhao, Zhicheng, Yueqiang Hu, and Shanyong Chen. 2024. "A Review: Phase Measurement Techniques Based on Metasurfaces" Photonics 11, no. 11: 996. https://doi.org/10.3390/photonics11110996
APA StyleZhao, Z., Hu, Y., & Chen, S. (2024). A Review: Phase Measurement Techniques Based on Metasurfaces. Photonics, 11(11), 996. https://doi.org/10.3390/photonics11110996