Reverse-Engineered Exact Control of Population Transfer in Lossy Nonlinear Three-State Systems
Abstract
:1. Introduction
2. Derivations
3. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glaser, S.J.; Boscain, U.; Calarco, T.; Koch, C.P.; Kockenberger, W.; Kosloff, R.; Kuprov, I.; Luy, B.; Schirmer, S.; Schulte-Herbrüggen, T.; et al. Training Schrödinger’s cat: Quantum optimal control. Strategic report on current status, visions, and goals for research in Europe. Eur. Phys. J. D 2015, 69, 279. [Google Scholar] [CrossRef]
- Koch, C.P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S.J.; Kosloff, R.; Montangero, S.; Schulte-Herbrüggen, T.; Sugny, D.; et al. Quantum optimal control in quantum technologies. Strategic report on current status, visions, and goals for research in Europe. EPJ Quantum Technol. 2022, 9, 19. [Google Scholar] [CrossRef]
- Ivanov, S.S.; Torosov, B.T.; Vitanov, N.V. High-Fidelity Quantum Control by Polychromatic Pulse Trains. Phys. Rev. Lett. 2022, 129, 240505. [Google Scholar] [CrossRef]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Petiziol, F.; Arimondo, E.; Giannelli, L.; Mintert, F.; Wimberger, S. Optimized three-level quantum transfers based on frequency-modulated optical excitations. Sci. Rep. 2020, 10, 2185. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, X. Fast-forward scaling of atom-molecule conversion in Bose-Einstein condensates. Phys. Rev. A 2021, 103, 023307. [Google Scholar] [CrossRef]
- Vepsäläinen, A.; Danilin, S.; Paraoanu, G.S. Superadiabatic population transfer in a three-level superconducting circuit. Sci. Adv. 2019, 5, eaau5999. [Google Scholar] [CrossRef]
- Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H.R.; Guérin, S. Nonlinear stimulated Raman exact passage by resonance-locked inverse engineering. Phys. Rev. Lett. 2017, 119, 243902. [Google Scholar] [CrossRef]
- Laforgue, X.; Chen, X.; Guérin, S. Robust stimulated Raman exact passage using shaped pulses. Phys. Rev. A 2019, 100, 023415. [Google Scholar] [CrossRef]
- Zhu, J.J.; Liu, K.; Chen, X.; Guerin, S. Optimal control and ultimate bounds of 1:2 nonlinear quantum systems. Phys. Rev. A 2023, 108, 042610. [Google Scholar] [CrossRef]
- Mackie, M.; Kowalski, R.; Javanainen, J. Bose-stimulated Raman adiabatic passage in photoassociation. Phys. Rev. Lett. 2000, 84, 3803. [Google Scholar] [CrossRef]
- Drummond, P.D.; Kheruntsyan, K.V.; Heinzen, D.J.; Wynar, R.H. Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate. Phys. Rev. A 2002, 65, 063619. [Google Scholar] [CrossRef]
- Ling, H.Y.; Pu, H.; Seaman, B. Creating a stable molecular condensate using a generalized Raman adiabatic passage scheme. Phys. Rev. Lett. 2004, 93, 250403. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, K.; Vitanov, N.V.; Shore, B.W.; Bergmann, K. Perspective: Stimulated Raman adiabatic passage: The status after 25 years. J. Chem. Phys. 2015, 142, 170901. [Google Scholar] [CrossRef] [PubMed]
- Vitanov, N.V.; Rangelov, A.A.; Shore, B.; Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 2017, 89, 015006. [Google Scholar] [CrossRef]
- Bergmann, K.; Nägerl, H.C.; Panda, C.; Gabrielse, G.; Miloglyadov, E.; Quack, M.; Quack, M.; Seyfang, G.; Wichmann, G.; Ospelkaus, S.; et al. Roadmap on STIRAP applications. J. Phys. B 2019, 52, 202001. [Google Scholar] [CrossRef]
- Olsen, M.K.; Plimak, L.I.; Kruglov, V.I.; Hope, J.J.; Drummond, P.D.; Collett, M.J. Dynamics of trapped Bose-Einstein condensates: Beyond the mean-field. Laser Phys. 2002, 12, 21–36. [Google Scholar]
- Mackie, M.; Härkönen, K.; Collin, A.; Suominen, K.-A.; Javanainen, J. Improved efficiency of stimulated Raman adiabatic passage in photoassociation of a Bose-Einstein condensate. Phys. Rev. A 2004, 70, 013614. [Google Scholar] [CrossRef]
- Javanainen, J.; Mackie, M. Coherent photoassociation of a Bose-Einstein condensate. Phys. Rev. A 1999, 59, R3186. [Google Scholar] [CrossRef]
- Kheruntsyan, K.V.; Drummond, P.D. Multidimensional parametric quantum solitons. Phys. Rev. A 1998, 58, R2676. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. Precise control of population transfer in nonlinear lambda systems through reverse engineering. In Proceedings of the 7th International Conference on Optics, Photonics and Lasers (OPAL’ 2024), Islands, Spain, 15–17 May 2024; pp. 187–188. [Google Scholar]
- Zwillinger, D. Handbook of Differential Equations, 3rd ed.; Academic Press: Boston, MA, USA, 1997. [Google Scholar]
- Zaitsev, V.F.; Polyanin, A.D. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, 3rd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Shi, Z.; Zhang, C.; Ran, D.; Xia, Y.; Ianconescu, R.; Friedman, A.; Yi, X.X.; Zheng, S. Composite pulses for high fidelity population transfer in three-level systems. New J. Phys. 2022, 24, 023014. [Google Scholar] [CrossRef]
- Guérin, S.; Gevorgyan, M.; Leroy, C.; Jauslin, H.R.; Ishkhanyan, A. Efficient adiabatic tracking of driven quantum nonlinear systems. Phys. Rev. A 2013, 88, 063622. [Google Scholar] [CrossRef]
- Shirkhanghah, N.; Saadati-Niari, M. Nonlinear fractional stimulated Raman exact passage in three-level λ systems. Rev. Mex. Física 2020, 66, 344–351. [Google Scholar] [CrossRef]
- Chen, X.; Ban, Y.; Hegerfeldt, G.C. Time-optimal quantum control of nonlinear two-level systems. Phys. Rev. A 2016, 94, 023624. [Google Scholar] [CrossRef]
- Messina, A.; Nakazato, H. Analytically solvable Hamiltonians for quantum two-level systems and their dynamics. J. Phys. A 2014, 47, 445302. [Google Scholar] [CrossRef]
- Barnes, E.; Das Sarma, S. Analytically solvable driven time-dependent two-level quantum systems. Phys. Rev. Lett. 2012, 109, 060401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishkhanyan, A. Reverse-Engineered Exact Control of Population Transfer in Lossy Nonlinear Three-State Systems. Photonics 2024, 11, 1007. https://doi.org/10.3390/photonics11111007
Ishkhanyan A. Reverse-Engineered Exact Control of Population Transfer in Lossy Nonlinear Three-State Systems. Photonics. 2024; 11(11):1007. https://doi.org/10.3390/photonics11111007
Chicago/Turabian StyleIshkhanyan, Artur. 2024. "Reverse-Engineered Exact Control of Population Transfer in Lossy Nonlinear Three-State Systems" Photonics 11, no. 11: 1007. https://doi.org/10.3390/photonics11111007
APA StyleIshkhanyan, A. (2024). Reverse-Engineered Exact Control of Population Transfer in Lossy Nonlinear Three-State Systems. Photonics, 11(11), 1007. https://doi.org/10.3390/photonics11111007