Camouflage Breaking with Stereo-Vision-Assisted Imaging
Abstract
1. Introduction
2. Theoretical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mondal, A. Camouflage design, assessment and breaking techniques: A survey. Multimed. Syst. 2022, 28, 141–160. [Google Scholar] [CrossRef]
- Stevens, M.; Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R. Soc. B 2009, 364, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Lamdouar, H.; Xie, W.; Zisserman, A. The making and breaking of camouflage. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 832–842. [Google Scholar]
- Cuthill, I.C. Camouflage. J. Zool. 2019, 308, 75–92. [Google Scholar] [CrossRef]
- Tankus, A.; Yeshurun, Y. Convexity-based visual camouflage breaking. Comput. Vis. Image Underst. 2001, 82, 208–237. [Google Scholar] [CrossRef]
- Stevens, M.; Ruxton, G. The key role of behaviour in animal camouflage. Biol. Rev. 2019, 94, 116–134. [Google Scholar] [CrossRef]
- Fan, D.; Ji, G.; Sun, G.; Cheng, M.; Shen, J.; Shao, L. Camouflaged object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2777–2787. [Google Scholar]
- Ji, G.; Fan, D.; Chou, Y.; Dai, D.; Liniger, A.; Van, G. Deep gradient learning for efficient camouflaged object detection. Mach. Intell. Res. 2023, 20, 92–108. [Google Scholar] [CrossRef]
- Julesz, B. Foundations of Cyclopean Perception; The University of Chicago Press: Chicago, IL, USA, 1971. [Google Scholar]
- Wardle, S.; Cass, J.; Brooks, K.; David, A. Breaking camouflage: Binocular disparity reduces contrast masking in natural images. J. Vis. 2010, 10, 38. [Google Scholar] [CrossRef]
- Geiger, A.; Roser, M.; Urtasun, R. Efficient large-scale stereo matching. In Asian Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Chen, J.; Kira, Z.; Cho, Y. Deep learning approach to point cloud scene understanding for automated scan to 3D reconstruction. J. Comput. Civ. Eng. 2019, 33, 04019027. [Google Scholar] [CrossRef]
- Seitz, S.; Curless, B.; Diebel, J. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 519–528. [Google Scholar]
- Zhai, Y.; Huang, H.; Sun, D. End-to-end infrared radiation sensing technique based on holography-guided visual attention network. Opt. Laser Eng. 2024, 178, 108201. [Google Scholar] [CrossRef]
- Ohzawa, I.; Deangelis, G.; Freeman, R. Encoding of binocular disparity by complex cells in the cat’s visual cortex. J. Neurophysiol. 1997, 77, 2879–2909. [Google Scholar] [CrossRef]
- Fleet, D.; Wagner, H.; Heeger, D. Neural encoding of binocular disparity: Energy models, position shifts and phase shifts. Vis. Res. 1996, 36, 1839–1857. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, P. Binocular energy responses to natural images. Vis. Res. 2008, 48, 1427–1439. [Google Scholar] [CrossRef] [PubMed]
- Ohzawa, I.; DeAngelis, G.; Freeman, R. Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors. Science 1990, 249, 1037–1041. [Google Scholar] [CrossRef]
- Haefner, R.; Cumming, B. Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model. Neuron 2008, 57, 147–158. [Google Scholar] [CrossRef]
- He, Y.; Chen, X.; Zhang, G.; Fan, Y.; Liu, X.; Deng, D.; Yan, Z.; Liang, H.; Zhou, J. A directionally illuminated pixel-selective flickering-free autostereoscopic display. Displays 2024, 82, 102651. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, X.; Wang, J.; He, Y.; Zhou, J. Directionally Illuminated Autostereoscopy with Seamless Viewpoints for Multi-Viewers. Micromachines 2024, 15, 403. [Google Scholar] [CrossRef]
- Yu, L. Stereo Matching with Cortical Disparity Detection Mechanisms. Ph.D. Thesis, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 2008. [Google Scholar]
- Jennings, J.; Charman, W. Depth resolution in stereoscopic systems. Appl. Opt. 1994, 33, 5192–5196. [Google Scholar] [CrossRef] [PubMed]
- Kytö, M.; Nuutinen, M.; Oittinen, P. Method for measuring stereo camera depth accuracy based on stereoscopic vision. Proc. SPIE 2011, 7864, 168–176. [Google Scholar]
- Webb, R. Confocal optical microscopy. Rep. Prog. Phys. 1996, 59, 427. [Google Scholar] [CrossRef]
- Xie, X.; Chen, Y.; Yang, K.; Zhou, J. Harnessing the point-spread function for high-resolution far-field optical microscopy. Phys. Rev. Lett. 2014, 113, 263901. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Wang, S.; Zhou, J. Minimized spot of annular radially polarized focusing beam. Opt. Lett. 2013, 38, 1331–1333. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, J.; Cheng, M.; Li, J.; Ma, K.; Hu, X.; Li, N.; Liang, H.; Zhu, Z.; Zhou, J.; et al. A novel clinical dynamic stereopsis assessment based on autostereoscopic display system. Ann. Transl. Med. 2022, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- McKee, S. The spatial requirements for fine stereoacuity. Vis. Res. 1983, 23, 191–198. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Chen, L.; Lin, J.; Liu, Y.; Zhou, J. Camouflage Breaking with Stereo-Vision-Assisted Imaging. Photonics 2024, 11, 970. https://doi.org/10.3390/photonics11100970
Yao H, Chen L, Lin J, Liu Y, Zhou J. Camouflage Breaking with Stereo-Vision-Assisted Imaging. Photonics. 2024; 11(10):970. https://doi.org/10.3390/photonics11100970
Chicago/Turabian StyleYao, Han, Libang Chen, Jinyan Lin, Yikun Liu, and Jianying Zhou. 2024. "Camouflage Breaking with Stereo-Vision-Assisted Imaging" Photonics 11, no. 10: 970. https://doi.org/10.3390/photonics11100970
APA StyleYao, H., Chen, L., Lin, J., Liu, Y., & Zhou, J. (2024). Camouflage Breaking with Stereo-Vision-Assisted Imaging. Photonics, 11(10), 970. https://doi.org/10.3390/photonics11100970