Camouflage Breaking with Stereo-Vision-Assisted Imaging
Abstract
:1. Introduction
2. Theoretical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mondal, A. Camouflage design, assessment and breaking techniques: A survey. Multimed. Syst. 2022, 28, 141–160. [Google Scholar] [CrossRef]
- Stevens, M.; Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R. Soc. B 2009, 364, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Lamdouar, H.; Xie, W.; Zisserman, A. The making and breaking of camouflage. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 832–842. [Google Scholar]
- Cuthill, I.C. Camouflage. J. Zool. 2019, 308, 75–92. [Google Scholar] [CrossRef]
- Tankus, A.; Yeshurun, Y. Convexity-based visual camouflage breaking. Comput. Vis. Image Underst. 2001, 82, 208–237. [Google Scholar] [CrossRef]
- Stevens, M.; Ruxton, G. The key role of behaviour in animal camouflage. Biol. Rev. 2019, 94, 116–134. [Google Scholar] [CrossRef]
- Fan, D.; Ji, G.; Sun, G.; Cheng, M.; Shen, J.; Shao, L. Camouflaged object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2777–2787. [Google Scholar]
- Ji, G.; Fan, D.; Chou, Y.; Dai, D.; Liniger, A.; Van, G. Deep gradient learning for efficient camouflaged object detection. Mach. Intell. Res. 2023, 20, 92–108. [Google Scholar] [CrossRef]
- Julesz, B. Foundations of Cyclopean Perception; The University of Chicago Press: Chicago, IL, USA, 1971. [Google Scholar]
- Wardle, S.; Cass, J.; Brooks, K.; David, A. Breaking camouflage: Binocular disparity reduces contrast masking in natural images. J. Vis. 2010, 10, 38. [Google Scholar] [CrossRef]
- Geiger, A.; Roser, M.; Urtasun, R. Efficient large-scale stereo matching. In Asian Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Chen, J.; Kira, Z.; Cho, Y. Deep learning approach to point cloud scene understanding for automated scan to 3D reconstruction. J. Comput. Civ. Eng. 2019, 33, 04019027. [Google Scholar] [CrossRef]
- Seitz, S.; Curless, B.; Diebel, J. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 519–528. [Google Scholar]
- Zhai, Y.; Huang, H.; Sun, D. End-to-end infrared radiation sensing technique based on holography-guided visual attention network. Opt. Laser Eng. 2024, 178, 108201. [Google Scholar] [CrossRef]
- Ohzawa, I.; Deangelis, G.; Freeman, R. Encoding of binocular disparity by complex cells in the cat’s visual cortex. J. Neurophysiol. 1997, 77, 2879–2909. [Google Scholar] [CrossRef]
- Fleet, D.; Wagner, H.; Heeger, D. Neural encoding of binocular disparity: Energy models, position shifts and phase shifts. Vis. Res. 1996, 36, 1839–1857. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, P. Binocular energy responses to natural images. Vis. Res. 2008, 48, 1427–1439. [Google Scholar] [CrossRef] [PubMed]
- Ohzawa, I.; DeAngelis, G.; Freeman, R. Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors. Science 1990, 249, 1037–1041. [Google Scholar] [CrossRef]
- Haefner, R.; Cumming, B. Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model. Neuron 2008, 57, 147–158. [Google Scholar] [CrossRef]
- He, Y.; Chen, X.; Zhang, G.; Fan, Y.; Liu, X.; Deng, D.; Yan, Z.; Liang, H.; Zhou, J. A directionally illuminated pixel-selective flickering-free autostereoscopic display. Displays 2024, 82, 102651. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, X.; Wang, J.; He, Y.; Zhou, J. Directionally Illuminated Autostereoscopy with Seamless Viewpoints for Multi-Viewers. Micromachines 2024, 15, 403. [Google Scholar] [CrossRef]
- Yu, L. Stereo Matching with Cortical Disparity Detection Mechanisms. Ph.D. Thesis, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 2008. [Google Scholar]
- Jennings, J.; Charman, W. Depth resolution in stereoscopic systems. Appl. Opt. 1994, 33, 5192–5196. [Google Scholar] [CrossRef] [PubMed]
- Kytö, M.; Nuutinen, M.; Oittinen, P. Method for measuring stereo camera depth accuracy based on stereoscopic vision. Proc. SPIE 2011, 7864, 168–176. [Google Scholar]
- Webb, R. Confocal optical microscopy. Rep. Prog. Phys. 1996, 59, 427. [Google Scholar] [CrossRef]
- Xie, X.; Chen, Y.; Yang, K.; Zhou, J. Harnessing the point-spread function for high-resolution far-field optical microscopy. Phys. Rev. Lett. 2014, 113, 263901. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Wang, S.; Zhou, J. Minimized spot of annular radially polarized focusing beam. Opt. Lett. 2013, 38, 1331–1333. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, J.; Cheng, M.; Li, J.; Ma, K.; Hu, X.; Li, N.; Liang, H.; Zhu, Z.; Zhou, J.; et al. A novel clinical dynamic stereopsis assessment based on autostereoscopic display system. Ann. Transl. Med. 2022, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- McKee, S. The spatial requirements for fine stereoacuity. Vis. Res. 1983, 23, 191–198. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Chen, L.; Lin, J.; Liu, Y.; Zhou, J. Camouflage Breaking with Stereo-Vision-Assisted Imaging. Photonics 2024, 11, 970. https://doi.org/10.3390/photonics11100970
Yao H, Chen L, Lin J, Liu Y, Zhou J. Camouflage Breaking with Stereo-Vision-Assisted Imaging. Photonics. 2024; 11(10):970. https://doi.org/10.3390/photonics11100970
Chicago/Turabian StyleYao, Han, Libang Chen, Jinyan Lin, Yikun Liu, and Jianying Zhou. 2024. "Camouflage Breaking with Stereo-Vision-Assisted Imaging" Photonics 11, no. 10: 970. https://doi.org/10.3390/photonics11100970
APA StyleYao, H., Chen, L., Lin, J., Liu, Y., & Zhou, J. (2024). Camouflage Breaking with Stereo-Vision-Assisted Imaging. Photonics, 11(10), 970. https://doi.org/10.3390/photonics11100970