Inverse Design of Reflectionless Thin-Film Multilayers with Optical Absorption Utilizing Tandem Neural Network
Abstract
:1. Introduction
2. Data Collection and Simulation
3. Tandem Neural Network (TNN)
4. Results and Discussion
4.1. Training Forward Neural Network
4.2. Training Tandem Neural Network
4.3. Visualizing in TMM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Whiteside, P.J.D.; Chininis, J.A.; Hunt, H.K. Techniques and Challenges for Characterizing Metal Thin Films with Applications in Photonics. Coatings 2016, 6, 35. [Google Scholar] [CrossRef]
- Li, X.; Yu, X.; Han, Y. Polymer thin films for antireflection coatings. J. Mater. Chem. C Mater. 2013, 1, 2266–2285. [Google Scholar] [CrossRef]
- Rack, P.D.; Holloway, P.H. The structure, device physics, and material properties of thin film electroluminescent displays. Mater. Sci. Eng. R Rep. 1998, 21, 171–219. [Google Scholar] [CrossRef]
- Hsiao, K.J.; Sites, J.R. Electron reflector to enhance photovoltaic efficiency: Application to thin-film CdTe solar cells. Prog. Photovolt. Res. Appl. 2012, 20, 486–489. [Google Scholar] [CrossRef]
- Siciliano, P. Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method. Sens. Actuators B Chem. 2000, 70, 153–164. [Google Scholar] [CrossRef]
- Priya, D.N.; Modak, J.M.; Raichur, A.M. LbL fabricated poly(Styrene Sulfonate)/TiO2 multilayer thin films for environmental applications. ACS Appl. Mater. Interfaces 2009, 1, 2684–2693. [Google Scholar] [CrossRef] [PubMed]
- Li, B.J.; Li, Z.X.; Wang, L.; Huang, L.J. Nanosecond pulsed laser annealing of Cu/Ag/AZO multilayer thin films for performance improvement and transparent heater application. Mater. Sci. Eng. B 2023, 294, 116539. [Google Scholar] [CrossRef]
- Garlisi, C.; Trepci, E.; Li, X.; Al Sakkaf, R.; Al-Ali, K.; Nogueira, R.P.; Zheng, L.; Azar, E.; Palmisano, G. Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties. Appl. Energy 2020, 264, 114697. [Google Scholar] [CrossRef]
- Peurifoy, J.; Shen, Y.; Jing, L.; Yang, Y.; Cano-Renteria, F.; DeLacy, B.G.; Joannopoulos, J.D.; Tegmark, M.; Soljačić, M. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 2018, 4, eaar4206. [Google Scholar] [CrossRef]
- Ma, W.; Cheng, F.; Xu, Y.; Wen, Q.; Liu, Y. Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-Supervised Learning Strategy. Adv. Mater. 2019, 31, 1901111. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Zhang, L.; Li, Y.; Yang, R.; Fu, Q.; Zhang, F.; Fan, Y. Inverse Design of Dual-Band Optically Transparent Metasurface Absorbers with Neural-Adjoint Method. Ann. Phys. 2023, 535, 2300054. [Google Scholar] [CrossRef]
- Yu, R.; Liu, Y.; Zhu, L. Inverse design of high degree of freedom meta-atoms based on machine learning and genetic algorithm methods. Opt. Express 2022, 30, 35776. [Google Scholar] [CrossRef]
- Liu, D.; Tan, Y.; Khoram, E.; Yu, Z. Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures. ACS Photonics 2018, 5, 1365–1369. [Google Scholar] [CrossRef]
- Xu, X.; Sun, C.; Li, Y.; Zhao, J.; Han, J.; Huang, W. An improved tandem neural network for the inverse design of nanophotonics devices. Opt. Commun. 2021, 481, 126513. [Google Scholar] [CrossRef]
- Head, S.; Hedayati, M.K. Inverse Design of Distributed Bragg Reflectors Using Deep Learning. Appl. Sci. 2022, 12, 4877. [Google Scholar] [CrossRef]
- Unni, R.; Yao, K.; Han, X.; Zhou, M.; Zheng, Y. A mixture-density-based tandem optimization network for on-demand inverse design of thin-film high reflectors. Nanophotonics 2021, 10, 4057–4065. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Ding, J.; Zhao, Y.; Liu, H.; Su, W.; Yang, L.; Tao, G.; Pryamikov, A.; Wang, X.; Mu, H.; et al. Artificial intelligence designer for optical Fibers: Inverse design of a Hollow-Core Anti-Resonant fiber based on a tandem neural network. Results Phys. 2023, 46, 106310. [Google Scholar] [CrossRef]
- Polyanskiy, M.N. Refractiveindex.info database of optical constants. Sci. Data 2024, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Hecht, E. Optics, 5th ed.; Pearson Education Limited: Essex, UK, 2017; 720p. [Google Scholar]
- Long, Y.; Ren, J.; Li, Y.; Chen, H. Inverse design of photonic topological state via machine learning. Appl. Phys. Lett. 2019, 114, 181105. [Google Scholar] [CrossRef]
- Mare, D.S.; Moreira, F.; Rossi, R. Nonstationary Z-Score measures. Eur. J. Oper. Res. 2017, 260, 348–358. [Google Scholar] [CrossRef]
- He, X.; Cui, X.; Chan, C.T. Constrained tandem neural network assisted inverse design of metasurfaces for microwave absorption. Opt. Express 2023, 31, 40969–40979. [Google Scholar] [CrossRef] [PubMed]
- Nikbakht, S.; Anitescu, C.; Rabczuk, T. Optimizing the neural network hyperparameters utilizing genetic algorithm. J. Zhejiang Univ. Sci. A 2021, 22, 407–426. [Google Scholar] [CrossRef]
- Prechelt, L. Early Stopping—But When? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–69. [Google Scholar]
- Keskar, N.S.; Nocedal, J.; Tang, P.T.P.; Mudigere, D.; Smelyanskiy, M. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017—Conference Track Proceedings, Toulon, France, 24–26 April 2017. [Google Scholar]
Hidden Layer Numbers | Neuron Numbers | Dropout | Learning Rate | |
---|---|---|---|---|
Model 1 | 3 | 500-500-500 | 0.02,-,0.01 | 1 × 10−4 |
Model 2 | 3 | 200-250-550 | -,-,0.01 | 1 × 10−5 |
Model 3 | 3 | 100-400-100 | -,-,0.01 | 1 × 10−6 |
Hidden Layer Numbers | Neuron Numbers | Dropout | Learning Rate | Batch Size | |
---|---|---|---|---|---|
Model 1 | 4 | 500-500-500-500 | 0.02,-,0.02,0.01 | 1 × 10−4 | 135 |
Model 2 | 4 | 500-550-550-500 | 0.01,-,-,0.02 | 1 × 10−5 | 145 |
Model 3 | 5 | 146-306-82-146-402 | 0.02,0.02,-,-,- | 1 × 10−6 | 155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swe, S.K.; Noh, H. Inverse Design of Reflectionless Thin-Film Multilayers with Optical Absorption Utilizing Tandem Neural Network. Photonics 2024, 11, 964. https://doi.org/10.3390/photonics11100964
Swe SK, Noh H. Inverse Design of Reflectionless Thin-Film Multilayers with Optical Absorption Utilizing Tandem Neural Network. Photonics. 2024; 11(10):964. https://doi.org/10.3390/photonics11100964
Chicago/Turabian StyleSwe, Su Kalayar, and Heeso Noh. 2024. "Inverse Design of Reflectionless Thin-Film Multilayers with Optical Absorption Utilizing Tandem Neural Network" Photonics 11, no. 10: 964. https://doi.org/10.3390/photonics11100964
APA StyleSwe, S. K., & Noh, H. (2024). Inverse Design of Reflectionless Thin-Film Multilayers with Optical Absorption Utilizing Tandem Neural Network. Photonics, 11(10), 964. https://doi.org/10.3390/photonics11100964