Learning Gradient-Based Feed-Forward Equalizer for VCSELs
Abstract
:1. Introduction
- Optimization of FFE Weights for VCSEL Transceivers: Building on the ODE-based integration, we introduce an ML approach to optimize FFE weights for VCSEL transceivers. This method effectively manages ISI and SER, leading to improved overall performance.
2. Rate Equations of VCSEL
2.1. Parasitic Elements
2.2. Rate Equations
2.2.1. Carrier Dynamics Equation
2.2.2. Photon Dynamics Equation
2.2.3. Output Power Equation
2.3. Self-Heating
2.4. Dynamic Response of VCSEL
3. FFEs Overview
4. Pipeline for Learning FFE Weights
4.1. Encoding and Input Transformation
4.2. Signal Conversion and Transmission
4.3. Output Processing and Estimation
4.4. Optimization and Loss Minimization
4.5. Training FFE Weights with the Adjoint Method
5. Numerical Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Q.; Bahadori, M.; Glick, M.; Rumley, S.; Bergman, K. Recent Advanced in Optical Technologies for Data Centers: A Review. Optica 2018, 5, 1354–1370. [Google Scholar] [CrossRef]
- Rumley, S.; Bahadori, M.; Polster, R.; Hammond, S.D.; Calhoun, D.M.; Wen, K.; Rodrigues, A.; Bergman, K. Optical Interconnects for Extreme Scale Computing Systems. Parallel Comput. 2017, 64, 65–80. [Google Scholar] [CrossRef]
- King, R. VCSEL Design for Automotive Datacom Experimental Results for 980 nm versus 850 nm. Technical Report, 2021. Available online: https://www.ieee802.org/3/cz/public/may_2021/king_3cz_01a_0521.pdf (accessed on 25 September 2024).
- Aoki, T.; Kubota, R.; Hiiro, H.; Yoshimoto, S.; Yanagisawa, M. 50 Gb/s PAM-4 VCSELs operating up to 125 °C. In Proceedings of the Optoelectronics and Communications Conference (OECC), Hong Kong, China, 3–7 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. T3D.4. [Google Scholar] [CrossRef]
- Jasim, F.Z.; Omar, K.; Hassan, Z. Temperature effect on VCSEL output performance. J. Optoelectron. Adv. Mater. 2009, 3, 1136–1138. [Google Scholar]
- Srinivasan, M.; Song, J.; Grabowski, A.; Szczerba, K.; Iversen, H.K.; Schmidt, M.N.; Zibar, D.; Schröder, J.; Larsson, A.; Häger, C.; et al. End-to-End Learning for VCSEL-based Optical Interconnects: State-of-the-Art, Challenges, and Opportunities. J. Light. Technol. 2023, 41, 3261–3277. [Google Scholar] [CrossRef]
- Berenguer, P.W.; Nölle, M.; Molle, L.; Raman, T.; Napoli, A.; Schubert, C.; Fischer, J.K. Nonlinear Digital Pre-distortion of Transmitter Components. IEEE J. Lightw. Technol. 2015, 34, 1739–1745. [Google Scholar] [CrossRef]
- Lavery, D.; Maher, R.; Liga, G.; Semrau, D.; Galdino, L.; Bayvel, P. On the Bandwidth Dependent Performance of Split Transmitter-receiver Optical Fiber Nonlinearity Compensation. Opt. Express 2017, 25, 4554–4563. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulos, S.; He, Z.S.; Svensson, L.; Zirath, H. Scalable, Modular Feed-Forward Equalizer for Baseband Applications. In Proceedings of the 2022 17th European Microwave Integrated Circuits Conference (EuMIC), Milan, Italy, 26–27 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 280–283. [Google Scholar]
- Maeda, K.; Yamamoto, S.; Kohmu, N.; Nishimura, K.; Fukasaku, I. An Active-Copper-Cable with Continuous-Time-Linear-Equalizer IC for 30-AWG 7-meters Reach Interconnect of 400-Gbit/s QSFP-DD. In Proceedings of the 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, 11–14 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 217–220. [Google Scholar]
- Belfiore, G.; Khafaji, M.; Henker, R.; Ellinger, F. A 50 Gb/s 190 mW asymmetric 3-tap FFE VCSEL driver. IEEE J.-Solid-State Circuits 2017, 52, 2422–2429. [Google Scholar] [CrossRef]
- Zhong, K.; Zhou, X.; Huo, J.; Yu, C.; Lu, C.; Lau, A.P.T. Digital Signal Processing for Short-reach Optical Communications: A Review of Current Technologies and Future Trends. IEEE J. Lightw. Technol. 2018, 36, 377–400. [Google Scholar] [CrossRef]
- Shen, T.S.R.; Lau, A.P.T. Fiber Nonlinearity Compensation using Extreme Learning Machine for DSP-based Coherent Communication Systems. In Proceedings of the Optoelectronics and Communications Conference (OECC), Kaohsiung, Taiwan, 4–8 July 2011; pp. 816–817. [Google Scholar]
- Gaiarin, S.; Pang, X.; Ozolins, O.; Jones, R.T.; Da Silva, E.P.; Schatz, R.; Westergren, U.; Popov, S.; Jacobsen, G.; Zibar, D. High Speed PAM-8 Optical Interconnects with Digital Equalization based on Neural Network. In Proceedings of the 2016 Asia Communications and Photonics Conference (ACP), Wuhan, China, 2–5 November 2016; pp. 1–3. [Google Scholar]
- Ge, L.; Zhang, W.; Liang, C.; He, Z. Compressed Neural Network Equalization based on Iterative Pruning Algorithm for 112-Gbps VCSEL-enabled Optical Interconnects. IEEE J. Lightw. Technol. 2020, 38, 1323–1329. [Google Scholar] [CrossRef]
- Deligiannidis, S.; Bogris, A.; Mesaritakis, C.; Kopsinis, Y. Compensation of fiber nonlinearities in digital coherent systems leveraging long short-term memory neural networks. IEEE J. Lightw. Technol. 2020, 38, 5991–5999. [Google Scholar] [CrossRef]
- Argyris, A.; Bueno, J.; Fischer, I. Photonic Machine Learning Implementation for Signal Recovery in Optical Communications. Sci. Rep. 2018, 8, 8487. [Google Scholar] [CrossRef] [PubMed]
- Paryanti, G.; Faig, H.; Rokach, L.; Sadot, D. A Direct Learning Approach for Neural Network based Pre-distortion for Coherent Nonlinear Optical Transmitter. IEEE J. Lightw. Technol. 2020, 38, 3883–3896. [Google Scholar] [CrossRef]
- Wu, Y.; Gustavsson, U.; Amat, A.G.I.; Wymeersch, H. Low Complexity Joint Impairment Mitigation of I/Q Modulator and PA Using Neural Networks. IEEE J. Sel. Areas Commun 2022, 40, 54–64. [Google Scholar] [CrossRef]
- Minelli, L.; Forghieri, F.; Shao, T.; Shahpari, A.; Gaudino, R. TDECQ-Based Optimization of Nonlinear Digital Pre-Distorters for VCSEL-MMF Optical Links Using End-to-end Learning. J. Light. Technol. 2023, 42, 621–635. [Google Scholar] [CrossRef]
- Schaedler, M.; Kuschnerov, M.; Calabrò, S.; Pittalà, F.; Bluemm, C.; Pachnicke, S. AI-based Digital Predistortion for IQ Mach-Zehnder Modulators. In Proceedings of the 2019 Asia Communications and Photonics Conference (ACP), Chengdu, China, 2–5 November 2019; pp. 1–3. [Google Scholar]
- Srinivasan, M.; Song, J.; Häger, C.; Szczerba, K.; Wymeersch, H.; Schröder, J. Learning optimal PAM levels for VCSEL-based optical interconnects. In Proceedings of the 2022 European Conference on Optical Communication (ECOC), Basel, Switzerland, 18–22 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar]
- Grabowski, A.; Gustavsson, J.; He, Z.S.; Larsson, A. Large-Signal Equivalent Circuit for Datacom VCSELs. IEEE J. Lightw. Technol. 2021, 39, 3225–3236. [Google Scholar] [CrossRef]
- Chen, R.T.Q. torchdiffeq, 2018. Available online: https://github.com/rtqichen/torchdiffeq (accessed on 25 September 2024).
- Chen, R.T.Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural Ordinary Differential Equations. In Proceedings of the NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 6572–6583. [Google Scholar]
- Kidger, P.; Chen, R.T.; Lyons, T.J. “Hey, that’s not an ODE”: Faster ODE Adjoints via Seminorms. In Proceedings of the ICML, Virtual, 18–24 July 2021; pp. 5443–5452. [Google Scholar]
- Coldren, L.A.; Corzine, S.W.; Mashanovitch, M.L. Diode Lasers and Photonic Integrated Circuits; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 218. [Google Scholar]
- Szczerba, K.; Kocot, C. Behavioral Modeling of VCSELs for High-speed Optical Interconnects. In Proceedings of the Vertical-Cavity Surface-Emitting Lasers XXII. International Society for Optics and Photonics, San Francisco, CA, USA, 31 January–1 February 2018; Volume 10552, p. 1055204. [Google Scholar]
- Shivashankar, V.; Kottke, C.; Jungnickel, V.; Freund, R. Investigation of linear and nonlinear pre-equalization of VCSEL. In Proceedings of the Broadband Coverage in Germany; 11. ITG-Symposium, Berlin, Germany, 29–30 March 2017; VDE: Berlin, Germany, 2017; pp. 1–5. [Google Scholar]
- Mowlavi, S.; Giannakopoulos, S.; Grabowski, A.; Svensson, L. A Review of IC Drivers for VCSELs in Datacom Applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 32, 42–54. [Google Scholar] [CrossRef]
- Li, S.; Häger, C.; Garcia, N.; Wymeersch, H. Achievable information rates for nonlinear fiber communication via end-to-end autoencoder learning. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–3. [Google Scholar]
- Karanov, B.; Chagnon, M.; Thouin, F.; Eriksson, T.A.; Bülow, H.; Lavery, D.; Bayvel, P.; Schmalen, L. End-to-end deep learning of optical fiber communications. J. Light. Technol. 2018, 36, 4843–4855. [Google Scholar] [CrossRef]
Taps | |||||
---|---|---|---|---|---|
2 | 0 | 0 | 0 | ||
3 | 0 | 0 | |||
4 | 0 | ||||
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasan, M.; Pourafzal, A.; Giannakopoulos, S.; Andrekson, P.; Häger, C.; Wymeersch, H. Learning Gradient-Based Feed-Forward Equalizer for VCSELs. Photonics 2024, 11, 943. https://doi.org/10.3390/photonics11100943
Srinivasan M, Pourafzal A, Giannakopoulos S, Andrekson P, Häger C, Wymeersch H. Learning Gradient-Based Feed-Forward Equalizer for VCSELs. Photonics. 2024; 11(10):943. https://doi.org/10.3390/photonics11100943
Chicago/Turabian StyleSrinivasan, Muralikrishnan, Alireza Pourafzal, Stavros Giannakopoulos, Peter Andrekson, Christian Häger, and Henk Wymeersch. 2024. "Learning Gradient-Based Feed-Forward Equalizer for VCSELs" Photonics 11, no. 10: 943. https://doi.org/10.3390/photonics11100943
APA StyleSrinivasan, M., Pourafzal, A., Giannakopoulos, S., Andrekson, P., Häger, C., & Wymeersch, H. (2024). Learning Gradient-Based Feed-Forward Equalizer for VCSELs. Photonics, 11(10), 943. https://doi.org/10.3390/photonics11100943