Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diagnostic Methods and Instruments
2.1.1. OA Imaging Apparatus
2.1.2. NIR Imaging
2.1.3. Digital Microscopy
2.1.4. Digital Profilometry
2.1.5. Spectral Measurements of Paint Layers
2.2. Mock-Ups Preparation Procedures
2.2.1. Canvas and Gypsum Mock-Ups
2.2.2. Artificially Aged Paint Samples
2.2.3. Gelatin Layer Preparation
3. Results
3.1. Characterization of the OA Imaging Apparatus
3.2. OA Detection of Paint Ageing
3.3. OA Imaging of Painted Canvas Mock-Ups with Varnish
3.4. OA Imaging of Gypsum Mock-Ups without Varnish
3.5. Imaging Performance Evaluation as a Function of Paint Layer Thickness
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Sensitivity Comparison between OA Detection and Absorption Spectroscopy
- for μ = 1/L, R becomes approximately equal to 1.718;
- for μ = 5/L, R becomes approximately equal to 29.48;
- for μ = 7/L, R becomes approximately equal to 156.5;
- for μ = 10/L, R becomes approximately equal to 2203.
References
- Pironti, C.; Ricciardi, M.; Proto, A.; Cucciniello, R.; Fiorentino, A.; Fiorillo, R.; Motta, O. New analytical approach to monitoring air quality in historical monuments through the isotopic ratio of CO2. Environ. Sci. Pollut. Res. 2022, 29, 29385–29390. [Google Scholar] [CrossRef] [PubMed]
- Faggiano, A.; Pironti, C.; Motta, O.; Miele, Y.; Fiorentino, A.; Marchettini, N.; Ricciardi, M.; Proto, A. Insight on the deterioration of cultural objects: A multi-analytical approach to characterize degradation products of lead weights from a Steinway & sons piano. Environ. Sci. Pollut. Res. 2023, 30, 104633–104639. [Google Scholar]
- Anglos, D.; Georgiou, S.; Fotakis, C. Lasers in the analysis of cultural heritage materials. Nano Res. 2009, 8, 47–60. [Google Scholar] [CrossRef]
- Jones, C.; Duffy, C.; Gibson, A.; Terras, M. Understanding multispectral imaging of cultural heritage: Determining best practice in MSI analysis of historical artefacts. J. Cult. Herit. 2020, 45, 339–350. [Google Scholar] [CrossRef]
- Es Sebar, L.; Lombardo, L.; Buscaglia, P.; Cavaleri, T.; Lo Giudice, A.; Re, A.; Borla, M.; Aicardi, S.; Grassini, S. 3D Multispectral Imaging for Cultural Heritage Preservation: The Case Study of a Wooden Sculpture of the Museo Egizio di Torino. Heritage 2023, 6, 2783–2795. [Google Scholar] [CrossRef]
- Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef]
- Targowski, P.; Iwanicka, M.; Rouba, B.J.; Frosinini, C. OCT for Examination of Artwork; Springer: Cham, Switzerland; Vero Beach, FL, USA, 2020; pp. 2473–2495. [Google Scholar]
- Targowski, P.; Iwanicka, M. Optical Coherence Tomography: Its role in the non-invasive structural examination and conservation of cultural heritage objects—A review. Appl. Phys. A 2012, 106, 265–277. [Google Scholar] [CrossRef]
- Liang, H.; Cid, M.G.; Dobre, G.M.; Podoleanu, A.G.; Pedro, J.; Saunders, D. En-face optical coherence tomography—A novel application of non-invasive imaging to art conservation. Opt. Express 2005, 13, 6133–6144. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Castillejo, M.; Fontana, R. Nonlinear optical microscopy for artworks physics. Riv. Nuovo Cim. 2021, 44, 453–498. [Google Scholar] [CrossRef]
- Mari, M.; Filippidis, G. Non-Linear Microscopy: A Well-Established Technique for Biological Applications towards Serving as a Diagnostic Tool for in situ Cultural Heritage Studies. Sustainability 2020, 12, 1409. [Google Scholar] [CrossRef]
- Bersani, D.; Lottici, P.P. Raman spectroscopy of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 2016, 47, 499–530. [Google Scholar] [CrossRef]
- Candeias, A.; Madariaga, J.M. Applications of Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 2019, 50, 137–142. [Google Scholar] [CrossRef]
- Edwards, H.; Colomban, P.; Vandenabeele, P. Raman Spectroscopy in Cultural Heritage Preservation; Springer International Publishing: Berlin, Germany, 2023. [Google Scholar]
- Liu, G.L.; Kazarian, S.G. Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Analyst 2022, 147, 1777–1797. [Google Scholar] [CrossRef] [PubMed]
- Poliszuk, A.; Ybarra, G. Analysis of cultural heritage materials by infrared spectroscopy. In Infrared Spectroscopy: Theory, Developments and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 519–536. [Google Scholar]
- Volpi, F.; Vagnini, M.; Vivani, R.; Malagodi, M.; Fiocco, G. Non-invasive identification of red and yellow oxide and sulfide pigments in wall-paintings with portable ER-FTIR spectroscopy. J. Cult. Herit. 2023, 63, 158–168. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Pouli, P.; Zacharakis, G. Listening to laser light interactions with objects of art: A novel photoacoustic approach for diagnosis and monitoring of laser cleaning interventions. Herit. Sci. 2020, 8, 98. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.; Ji, F.; Jiang, Y.; Yang, M. Mini review of photoacoustic clinical imaging: A noninvasive tool for disease diagnosis and treatment evaluation. J. Biomed. Opt. 2024, 29, S11522. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Han, S.; Kye, H.; Kim, T.-K.; Choi, W.; Kim, J. A Review on the Roles of Photoacoustic Imaging for Conventional and Novel Clinical Diagnostic Applications. Photonics 2023, 10, 904. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Mavrakis, K.G.; Pantazopoulou, D.; Lagoudaki, E.; Detorakis, E.; Zacharakis, G. Hybrid autofluorescence and photoacoustic label-free microscopy for the investigation and identification of malignancies in ocular biopsies. Opt. Lett. 2020, 45, 5748–5751. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.-I. Biomedical Optics: Principles and Imaging; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 283–293. [Google Scholar]
- Yao, J.; Wang, L.V. Sensitivity of photoacoustic microscopy. Photoacoustics 2014, 2, 87–101. [Google Scholar] [CrossRef]
- Hui, J.; Li, R.; Phillips, E.H.; Goergen, C.J.; Sturek, M.; Cheng, J.-X. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics 2016, 4, 11–21. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Chaban, A.; Klironomou, E.; Melessanaki, K.; Striova, J.; Zacharakis, G. Revealing Hidden Features in Multilayered Artworks by Means of an Epi-Illumination Photoacoustic Imaging System. J. Imaging 2021, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Tserevelakis, G.J.; Tsagkaraki, M.; Siozos, P.; Zacharakis, G. Uncovering the hidden content of layered documents by means of photoacoustic imaging. Strain 2019, 55, e12289. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Tserevelakis, G.J.; Papanikolaou, A.; Zacharakis, G.; Fontana, R. Combined photoacoustic imaging to delineate the internal structure of paintings. Opt. Lett. 2019, 44, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Tserevelakis, G.J.; Tsafas, V.; Melessanaki, K.; Zacharakis, G.; Filippidis, G. Combined multiphoton fluorescence microscopy and photoacoustic imaging for stratigraphic analysis of paintings. Opt. Lett. 2019, 44, 1154–1157. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Tserevelakis, G.J.; Klironomou, E.; Zacharakis, G.; Fontana, R. First combined application of photoacoustic and optical techniques to the study of an historical oil painting. Eur. Phys. J. Plus 2021, 136, 757. [Google Scholar] [CrossRef]
- Seves, A.M.; Sora, S.; Scicolone, G.; Testa, G.; Bonfatti, A.M.; Rossi, E.; Seves, A. Effect of thermal accelerated ageing on the properties of model canvas paintings. J. Cult. Herit. 2000, 1, 315–322. [Google Scholar] [CrossRef]
- Bacci, M.; Picollo, M.; Porcinai, S.; Radicati, B. Evaluation of the museum environmental risk by means of tempera-painted dosimeters. Thermochim. Acta. 2000, 365, 25–34. [Google Scholar] [CrossRef]
- Farmakalidis, H.V.; Douvas, A.M.; Karatasios, I.; Sotiropoulou, S.; Boyatzis, S.; Argitis, P.; Chryssoulakis, Y.; Kilikoglou, V. Accelerated thermal ageing of acrylic copolymers, cyclohexanone-based and urea-aldehyde resins used in paintings conservation. Mediterr. Archaeol. Archaeom. 2016, 16, 213–228. [Google Scholar]
- Gervais, C.; Languille, M.-A.; Reguer, S.; Garnier, C.; Gillet, m. Light and anoxia fading of Prussian blue dyed textiles. Herit. Sci. 2014, 2, 26. [Google Scholar] [CrossRef]
- Amanatiadis, S.; Apostolidis, G.; Karagiannis, G. Consistent characterization of color degradation due to artificial aging procedures at popular pigments of byzantine iconography. Minerals 2021, 11, 782. [Google Scholar] [CrossRef]
- De France, K.J.; D’Emilio, E.; Cranston, E.D.; Geiger, T.; Nyström, G. Dual physically and chemically crosslinked regenerated cellulose—Gelatin composite hydrogels towards art restoration. Carbohydr. Polym. 2020, 234, 115885. [Google Scholar] [CrossRef] [PubMed]
- Giraud, T.; Gomez, A.; Lemoine, S.; Pelé-Meziani, C.; Raimon, A.; Guilminot, E. Use of gels for the cleaning of archaeological metals. Case study of silver-plated copper alloy coins. J. Cult. Herit. 2021, 52, 73–83. [Google Scholar] [CrossRef]
- Biqin, D.; Sun, C.; Zhang, H.F. Optical Detection of Ultrasound in Photoacoustic Imaging. IEEE Trans. Biomed. Eng. 2017, 64, 4–15. [Google Scholar]
- Wissmeyer, G.; Pleitez, M.A.; Rosenthal, A.; Ntziachristos, V. Looking at sound: Optoacoustics with all-optical ultrasound detection. Light Sci. Appl. 2018, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Pleitez, M.A.; Khan, A.A.; Soldà, A.; Chmyrov, A.; Reber, J.; Gasparin, F.; Seeger, M.R.; Schätz, B.; Herzig, S.; Scheideler, M.; et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 2020, 38, 293–296. [Google Scholar] [CrossRef]
- Visscher, M.; Pleitez, M.A.; Van Gaalen, K.; Nieuwenhuizen-Bakker, I.M.; Ntziachristos, V.; Van Soest, G. Label-free analytic histology of carotid atherosclerosis by mid-infrared optoacoustic microscopy. Photoacoustics 2022, 26, 100354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tserevelakis, G.J.; Pirgianaki, E.; Melessanaki, K.; Zacharakis, G.; Fotakis, C. Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics. Photonics 2024, 11, 902. https://doi.org/10.3390/photonics11100902
Tserevelakis GJ, Pirgianaki E, Melessanaki K, Zacharakis G, Fotakis C. Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics. Photonics. 2024; 11(10):902. https://doi.org/10.3390/photonics11100902
Chicago/Turabian StyleTserevelakis, George J., Eleanna Pirgianaki, Kristalia Melessanaki, Giannis Zacharakis, and Costas Fotakis. 2024. "Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics" Photonics 11, no. 10: 902. https://doi.org/10.3390/photonics11100902
APA StyleTserevelakis, G. J., Pirgianaki, E., Melessanaki, K., Zacharakis, G., & Fotakis, C. (2024). Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics. Photonics, 11(10), 902. https://doi.org/10.3390/photonics11100902