Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire
Abstract
:1. Introduction
2. Material Preparation
3. Experiment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishii, N.; Turi, L.; Yakovlev, V.S.; Fuji, T.; Krausz, F.; Baltuška, A.; Butkus, R.; Veitas, G.; Smilgevičius, V.; Danielius, R.; et al. Multimillijoule chirped parametric amplification of few–cycle pulses. Opt. Lett. 2000, 30, 567–569. [Google Scholar] [CrossRef]
- Bertolotti, M. High–order Harmonic Generation in Laser Plasma Plumes by Rashid Ganeev. Contemp. Phys. 2015, 56, 88–89. [Google Scholar]
- Walsh, M.J.; Beurskens, M.; Carolan, P.G.; Gilbert, M.; Loughlin, M.; Morris, A.W.; Riccardo, V.; Xue, Y.; Huxford, R.B.; Walker, C.I. Design challenges and analysis of the iter core lidar thomson scattering system. Review of Scientific Instruments. Rev. Sci. Instrum. 2006, 77, 1925. [Google Scholar] [CrossRef]
- Au, J.A.D.; Spühler, G.J.; Südmeyer, T.; Paschotta, R.; Hövel, R.; Moser, M.; Erhard, S.; Karszewski, M.; Giesen, A.; Keller, U. 16.2–W average power from a diode–pumped femtosecond Yb:YAG thin disk laser. Opt. Lett. 2000, 25, 859–861. [Google Scholar]
- Liu, Z.; Izumida, S.; Ono, S.; Ohtake, H.; Sarukura, N. High–repetition–rate, high–average–power, mode–locked Ti:sapphire laser with an intracavity continuous–wave amplification scheme. Appl. Phys. Lett. 1999, 74, 3622–3623. [Google Scholar]
- Beddard, T.; Sibbett, W.; Reid, D.T.; Garduno-Mejia, J.; Jamasbi, N.; Mohebi, M. High–average–power, 1–MW peak–power self–mode–locked Ti: Sapphire oscillator. Opt. Lett. 1999, 24, 163–165. [Google Scholar] [CrossRef]
- Zayhowski, J.J.; Dill, I.C. Diode–pumped passively Q–switched picosecond microchip lasers. Opt. Lett. 1994, 19, 1427–1429. [Google Scholar] [CrossRef]
- Braun, B.; Kärtner, F.X.; Zhang, G.; Moser, M.; Keller, U. 56–ps passively Q–switched diode–pumped microchip laser. Opt. Lett. 1997, 22, 381–383. [Google Scholar]
- Kulagin, O.V.; Gorbunov, I.A.; Sergeev, A.M.; Valley, M. Picosecond Raman Compression Laser at 1530 nm with Aberration Compensation. Opt. Lett. 2013, 38, 3237–3240. [Google Scholar] [PubMed]
- Kubeček, V.; Hamal, K.; Procházka, I.; Valach, P.; Buzelis, R.; Dementev, A. Compression of the Nd: YAP Laser Pulse by Two–Stage Stimulated Backward Scattering. Opt. Commun. 1989, 73, 251–256. [Google Scholar] [CrossRef]
- Kuwahara, K.; Takahashi, E.; Matsumoto, Y.; Kato, S.; Owadano, Y. Short–Pulse Generation by Saturated KrF Laser Amplification of a Steep Stokes Pulse Produced by TwoStep Stimulated Brillouin Scattering. J. Opt. Soc. Am. B 2000, 17, 1943–1947. [Google Scholar] [CrossRef]
- Hasi, W.L.J.; Lu, Z.W.; Lu, H.H.; Fu, M.L.; Gong, S.; Lin, D.Y.; He, W.M.; Gao, W. Investigation on Pulse Compression Based on Stimulated Brillouin Scattering and Optical Breakdown. Appl. Phys. B 2010, 98, 397–400. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Wang, H.; Bai, Z.; Li, S.; Zhang, H.; Wang, Y.; He, W.; Lin, D.; Lu, Z. Pulse temporal compression by two–stage stimulated Brillouin scattering and laser–induced breakdown. Appl. Phys. Lett. 2017, 110, 241108. [Google Scholar]
- Noack, J.; Vogel, A. Laser–Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density. IEEE J. Quantum Electron. 1999, 35, 1156–1167. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Baliga, B.J. Comparison of 6H–SiC, 3C–SiC, and Si for power devices. IEEE Trans. Electron Devices 1993, 40, 645–655. [Google Scholar] [CrossRef]
- Shelton, D.P. Long–range correlation of intra–molecular and inter–molecular vibration in liquid CCl4. J. Chem. Phys. 2021, 154, 034502. [Google Scholar] [CrossRef]
- Chakraborty, T.; Rai, S.N. Depolarization ratio and correlation between the relative intensity data and the abundance ratio of various isotopes of liquid carbon tetrachloride at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 62, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, K.; Takahashib, E.; Matsumoto, Y.; Matsushima, I.; Okuda, I.; Kato, S.; Owadano, Y. High Intensity Pulse Generation by Saturated Amplification of Stokes Pulse with Steep Leading Edge. In Proceedings of the ECLIM 2000: 26th European Conference on Laser Interaction with Matter, Prague, Czech Republic, 12–16 June 2000; SPIE: Bellingham, WA, USA, 2011; Volume 4424, pp. 155–158. [Google Scholar]
- Mitra, A.; Yoshida, H.; Fujita, H.; Nakatsuka, M. Sub Nanosecond Pulse Generation by Stimulated Brillouin Scattering Using FC–75 in an Integrated with Laser Energy up to 1.5 J. Jpn. J. Appl. Phys. 2006, 45, 1607–1611. [Google Scholar]
- Feng, C.; Xu, X.; Diels, J.C. High–Energy Sub–Phonon Lifetime Pulse Compression by Stimulated Brillouin Scattering in Liquids. Opt. Express 2017, 25, 12421–12434. [Google Scholar] [CrossRef]
- Frings, H. Compact Temporal–Pulse–Compressor Used in Fused–Silica Glass at 1064 nm Wavelength. Jpn. J. Appl. Phys. 2007, 46, L80–L82. [Google Scholar]
- Dane, C.B.; Neuman, W.A.; Norton, M.A. Energy Scaling of SBS Pulse Compression. Proc. SPIE 1992, 1626, 297–307. [Google Scholar]
- Hall, T.J. Principles of Phase Conjugation. Opt. Acta Int. J. Opt. 1986, 33, 685–686. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Y.; Lu, Z.; Wang, Y.; Liu, Z.; Bai, Z.; Cui, C.; Liu, R.; Zhang, H.; Hasi, W. Fluctuation Initiation of Stokes Signal and Its Effect on Stimulated Brillouin Scattering Pulse Compression. Opt. Express 2017, 25, 14378–14388. [Google Scholar]
- Hasi, W.; Zhong, Z.; Qiao, Z.; Guo, X.; Li, X.; Lin, D.; He, W.; Fan, R.; Lü, Z. The Effects of Medium Phonon Lifetime on Pulse Compression Ratio in the Process of Stimulated Brillouin Scattering. Opt. Commun. 2012, 285, 3541–3544. [Google Scholar]
- Gorbunov, V. Formation and Amplification of Ultrashort Optical Pulses as a Result of Stimulated Scattering in Opposite Directions. Sov. J. Quantum Electron. 1984, 14, 1066–1069. [Google Scholar]
Number | OD | Input Energy (mJ) | Minimum Pulse Width (ps) | Stability (ps) |
---|---|---|---|---|
1 | 0.1 | 39.9 | 290.2 | 31.1 |
2 | 0.15 | 33.9 | 250 | 34.4 |
3 | 0.2 | 35.7 | 254.4 | 48.6 |
Number | OD | Input Energy (mJ) | Maximum Output Energy (mJ) | Saturation Energy Conversion Efficiency (%) |
---|---|---|---|---|
1 | 0.1 | 62.2 | 31.2 | 50.1 |
2 | 0.15 | 62.2 | 30.7 | 49.4 |
3 | 0.2 | 58.7 | 29.2 | 49.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Zhao, Y.; Zhang, W.; Sun, D. Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire. Photonics 2024, 11, 96. https://doi.org/10.3390/photonics11010096
Feng L, Zhao Y, Zhang W, Sun D. Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire. Photonics. 2024; 11(1):96. https://doi.org/10.3390/photonics11010096
Chicago/Turabian StyleFeng, Lai, Yiming Zhao, Weiwei Zhang, and Dongsong Sun. 2024. "Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire" Photonics 11, no. 1: 96. https://doi.org/10.3390/photonics11010096
APA StyleFeng, L., Zhao, Y., Zhang, W., & Sun, D. (2024). Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire. Photonics, 11(1), 96. https://doi.org/10.3390/photonics11010096