Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire
Abstract
1. Introduction
2. Material Preparation
3. Experiment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishii, N.; Turi, L.; Yakovlev, V.S.; Fuji, T.; Krausz, F.; Baltuška, A.; Butkus, R.; Veitas, G.; Smilgevičius, V.; Danielius, R.; et al. Multimillijoule chirped parametric amplification of few–cycle pulses. Opt. Lett. 2000, 30, 567–569. [Google Scholar] [CrossRef]
- Bertolotti, M. High–order Harmonic Generation in Laser Plasma Plumes by Rashid Ganeev. Contemp. Phys. 2015, 56, 88–89. [Google Scholar]
- Walsh, M.J.; Beurskens, M.; Carolan, P.G.; Gilbert, M.; Loughlin, M.; Morris, A.W.; Riccardo, V.; Xue, Y.; Huxford, R.B.; Walker, C.I. Design challenges and analysis of the iter core lidar thomson scattering system. Review of Scientific Instruments. Rev. Sci. Instrum. 2006, 77, 1925. [Google Scholar] [CrossRef]
- Au, J.A.D.; Spühler, G.J.; Südmeyer, T.; Paschotta, R.; Hövel, R.; Moser, M.; Erhard, S.; Karszewski, M.; Giesen, A.; Keller, U. 16.2–W average power from a diode–pumped femtosecond Yb:YAG thin disk laser. Opt. Lett. 2000, 25, 859–861. [Google Scholar]
- Liu, Z.; Izumida, S.; Ono, S.; Ohtake, H.; Sarukura, N. High–repetition–rate, high–average–power, mode–locked Ti:sapphire laser with an intracavity continuous–wave amplification scheme. Appl. Phys. Lett. 1999, 74, 3622–3623. [Google Scholar]
- Beddard, T.; Sibbett, W.; Reid, D.T.; Garduno-Mejia, J.; Jamasbi, N.; Mohebi, M. High–average–power, 1–MW peak–power self–mode–locked Ti: Sapphire oscillator. Opt. Lett. 1999, 24, 163–165. [Google Scholar] [CrossRef]
- Zayhowski, J.J.; Dill, I.C. Diode–pumped passively Q–switched picosecond microchip lasers. Opt. Lett. 1994, 19, 1427–1429. [Google Scholar] [CrossRef]
- Braun, B.; Kärtner, F.X.; Zhang, G.; Moser, M.; Keller, U. 56–ps passively Q–switched diode–pumped microchip laser. Opt. Lett. 1997, 22, 381–383. [Google Scholar]
- Kulagin, O.V.; Gorbunov, I.A.; Sergeev, A.M.; Valley, M. Picosecond Raman Compression Laser at 1530 nm with Aberration Compensation. Opt. Lett. 2013, 38, 3237–3240. [Google Scholar] [PubMed]
- Kubeček, V.; Hamal, K.; Procházka, I.; Valach, P.; Buzelis, R.; Dementev, A. Compression of the Nd: YAP Laser Pulse by Two–Stage Stimulated Backward Scattering. Opt. Commun. 1989, 73, 251–256. [Google Scholar] [CrossRef]
- Kuwahara, K.; Takahashi, E.; Matsumoto, Y.; Kato, S.; Owadano, Y. Short–Pulse Generation by Saturated KrF Laser Amplification of a Steep Stokes Pulse Produced by TwoStep Stimulated Brillouin Scattering. J. Opt. Soc. Am. B 2000, 17, 1943–1947. [Google Scholar] [CrossRef]
- Hasi, W.L.J.; Lu, Z.W.; Lu, H.H.; Fu, M.L.; Gong, S.; Lin, D.Y.; He, W.M.; Gao, W. Investigation on Pulse Compression Based on Stimulated Brillouin Scattering and Optical Breakdown. Appl. Phys. B 2010, 98, 397–400. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Wang, H.; Bai, Z.; Li, S.; Zhang, H.; Wang, Y.; He, W.; Lin, D.; Lu, Z. Pulse temporal compression by two–stage stimulated Brillouin scattering and laser–induced breakdown. Appl. Phys. Lett. 2017, 110, 241108. [Google Scholar]
- Noack, J.; Vogel, A. Laser–Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density. IEEE J. Quantum Electron. 1999, 35, 1156–1167. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Baliga, B.J. Comparison of 6H–SiC, 3C–SiC, and Si for power devices. IEEE Trans. Electron Devices 1993, 40, 645–655. [Google Scholar] [CrossRef]
- Shelton, D.P. Long–range correlation of intra–molecular and inter–molecular vibration in liquid CCl4. J. Chem. Phys. 2021, 154, 034502. [Google Scholar] [CrossRef]
- Chakraborty, T.; Rai, S.N. Depolarization ratio and correlation between the relative intensity data and the abundance ratio of various isotopes of liquid carbon tetrachloride at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 62, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, K.; Takahashib, E.; Matsumoto, Y.; Matsushima, I.; Okuda, I.; Kato, S.; Owadano, Y. High Intensity Pulse Generation by Saturated Amplification of Stokes Pulse with Steep Leading Edge. In Proceedings of the ECLIM 2000: 26th European Conference on Laser Interaction with Matter, Prague, Czech Republic, 12–16 June 2000; SPIE: Bellingham, WA, USA, 2011; Volume 4424, pp. 155–158. [Google Scholar]
- Mitra, A.; Yoshida, H.; Fujita, H.; Nakatsuka, M. Sub Nanosecond Pulse Generation by Stimulated Brillouin Scattering Using FC–75 in an Integrated with Laser Energy up to 1.5 J. Jpn. J. Appl. Phys. 2006, 45, 1607–1611. [Google Scholar]
- Feng, C.; Xu, X.; Diels, J.C. High–Energy Sub–Phonon Lifetime Pulse Compression by Stimulated Brillouin Scattering in Liquids. Opt. Express 2017, 25, 12421–12434. [Google Scholar] [CrossRef]
- Frings, H. Compact Temporal–Pulse–Compressor Used in Fused–Silica Glass at 1064 nm Wavelength. Jpn. J. Appl. Phys. 2007, 46, L80–L82. [Google Scholar]
- Dane, C.B.; Neuman, W.A.; Norton, M.A. Energy Scaling of SBS Pulse Compression. Proc. SPIE 1992, 1626, 297–307. [Google Scholar]
- Hall, T.J. Principles of Phase Conjugation. Opt. Acta Int. J. Opt. 1986, 33, 685–686. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Y.; Lu, Z.; Wang, Y.; Liu, Z.; Bai, Z.; Cui, C.; Liu, R.; Zhang, H.; Hasi, W. Fluctuation Initiation of Stokes Signal and Its Effect on Stimulated Brillouin Scattering Pulse Compression. Opt. Express 2017, 25, 14378–14388. [Google Scholar]
- Hasi, W.; Zhong, Z.; Qiao, Z.; Guo, X.; Li, X.; Lin, D.; He, W.; Fan, R.; Lü, Z. The Effects of Medium Phonon Lifetime on Pulse Compression Ratio in the Process of Stimulated Brillouin Scattering. Opt. Commun. 2012, 285, 3541–3544. [Google Scholar]
- Gorbunov, V. Formation and Amplification of Ultrashort Optical Pulses as a Result of Stimulated Scattering in Opposite Directions. Sov. J. Quantum Electron. 1984, 14, 1066–1069. [Google Scholar]
Number | OD | Input Energy (mJ) | Minimum Pulse Width (ps) | Stability (ps) |
---|---|---|---|---|
1 | 0.1 | 39.9 | 290.2 | 31.1 |
2 | 0.15 | 33.9 | 250 | 34.4 |
3 | 0.2 | 35.7 | 254.4 | 48.6 |
Number | OD | Input Energy (mJ) | Maximum Output Energy (mJ) | Saturation Energy Conversion Efficiency (%) |
---|---|---|---|---|
1 | 0.1 | 62.2 | 31.2 | 50.1 |
2 | 0.15 | 62.2 | 30.7 | 49.4 |
3 | 0.2 | 58.7 | 29.2 | 49.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Zhao, Y.; Zhang, W.; Sun, D. Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire. Photonics 2024, 11, 96. https://doi.org/10.3390/photonics11010096
Feng L, Zhao Y, Zhang W, Sun D. Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire. Photonics. 2024; 11(1):96. https://doi.org/10.3390/photonics11010096
Chicago/Turabian StyleFeng, Lai, Yiming Zhao, Weiwei Zhang, and Dongsong Sun. 2024. "Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire" Photonics 11, no. 1: 96. https://doi.org/10.3390/photonics11010096
APA StyleFeng, L., Zhao, Y., Zhang, W., & Sun, D. (2024). Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire. Photonics, 11(1), 96. https://doi.org/10.3390/photonics11010096