An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements
Abstract
1. Introduction
2. Experiment Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braun, A.; Korn, G.; Liu, X.; Du, D.; Squier, J.; Mourou, G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 1995, 20, 73–75. [Google Scholar] [CrossRef]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Kasparian, J.; Sauerbrey, R.; Chin, S.L. The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 2000, 71, 877–879. [Google Scholar] [CrossRef]
- Kasparian, J.; Sauerbrey, R.; Mondelain, D.; Niedermeier, S.; Yu, J.; Wolf, J.-P.; André, Y.-B.; Franco, M.; Prade, B.; Tzortzakis, S.; et al. Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett. 2000, 25, 1397–1399. [Google Scholar] [CrossRef]
- Aközbek, N.; Iwasaki, A.; Becker, A.; Scalora, M.; Chin, S.L.; Bowden, C.M. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses. Phys. Rev. Lett. 2002, 89, 143901. [Google Scholar] [CrossRef]
- Xi, T.T.; Lu, X.; Zhang, J. Enhancement of third harmonic emission by interaction of two colored filament with droplet in air. Opt. Commun. 2009, 282, 3140–3143. [Google Scholar] [CrossRef]
- Chen, X.W.; Liu, J.; Zhu, Y.; Leng, Y.X.; Ge, X.C.; Li, R.X.; Xu, Z.Z. Self-compression of high-intensity femtosecond laser pulses in air. Acta Phys. Sin. 2005, 54, 3665–3669. [Google Scholar] [CrossRef]
- Couairon, A.; Franco, M.; Mysyrowicz, A.; Biegert, J.; Keller, U. Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient. Opt. Lett. 2005, 30, 2657–2659. [Google Scholar] [CrossRef]
- Xu, L.; Xi, T. Generation of high quality sub-two-cycle pulses by self-cleaning of spatiotemporal solitons in air-plasma channels. arXiv 2023. [Google Scholar] [CrossRef]
- Kasparian, J.; Rodriguez, M.; Méjean, G.; Yu, J.; Salmon, E.; Wille, H.; Bourayou, R.; Frey, S.; Andre, Y.-B.; Mysyrowicz, A.; et al. White-light filaments for atmospheric analysis. Science 2003, 301, 61–64. [Google Scholar] [CrossRef]
- Xu, H.L.; Chin, S.L. Femtosecond laser filamentation for atmospheric sensing. Sensors 2011, 11, 32–53. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Wahlstrand, J.K.; Jhajj, N.; Milchberg, H.M. The effect of long timescale gas dynamics on femtosecond filamentation. Opt. Express 2013, 21, 4740–4751. [Google Scholar] [CrossRef]
- Jhajj, N.; Rosenthal, E.W.; Birnbaum, R.; Wahlstrand, J.K.; Milchberg, H.M. Demonstration of long-lived high-power optical waveguides in air. Phys. Rev. X 2014, 4, 011027. [Google Scholar]
- Goffin, A.; Larkin, I.; Tartaro, A.; Schweinsberg, A.; Valenzuela, A.; Rosenthal, E.W.; Milchberg, H.M. Optical guiding in 50-meter-scale air waveguides. Phys. Rev. X 2023, 13, 011006. [Google Scholar] [CrossRef]
- Dogariu, A.; Michael, J.B.; Scully, M.O.; Miles, R.B. High-gain backward lasing in air. Science 2011, 331, 442–445. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, X.; Wang, Y.; Fang, Y.; Lu, Q.; Li, Z.; Liu, Y.; Wu, C.; Gong, Q.; Liu, Y.; et al. Structured air lasing of N2+. Commun. Phys. 2023, 6, 97. [Google Scholar] [CrossRef]
- Hu, Y.; Ye, Z.; Li, H.; Lu, C.; Chen, F.; Wang, J.; Pan, S.; Zhang, M.; Gao, J.; Wu, J. Generation of vortex N2+ lasing. Optica 2023, 10, 682–687. [Google Scholar] [CrossRef]
- Kasparian, J.; Ackermann, R.; André, Y.-B.; Méchain, G.; Méjean, G.; Prade, B.; Rohwetter, P.; Salmon, E.; Stelmaszczyk, K.; Yu, J.; et al. Progress towards lightning control using lasers. J. Eur. Opt. Soc. Rapid 2008, 3, 08035. [Google Scholar] [CrossRef]
- Houard, A.; Walch, P.; Produit, T.; Moreno, V.; Mahieu, B.; Sunjerga, A.; Herkommer, C.; Mostajabi, A.; Andral, U.; André, Y.; et al. Laser-guided lightning. Nat. Photonics 2023, 17, 231–235. [Google Scholar] [CrossRef]
- Stelmaszczyk, K.; Rohwetter, P.; Méjean, G.; Yu, J.; Salmon, E.; Kasparian, J.; Ackermann, R.; Wolf, J.P.; Wöste, L. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 2004, 85, 3977–3979. [Google Scholar] [CrossRef]
- Xu, H.L.; Liu, W.W.; Chin, S.L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials. Opt. Lett. 2006, 31, 1540–1542. [Google Scholar] [CrossRef]
- Burger, M.; Polynkin, P.; Jovanovic, I. Filament-induced breakdown spectroscopy with structured beams. Opt. Express 2020, 28, 36812–36821. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Li, H.; Ni, J.; Zeng, B.; Yao, J.; Zhang, H.; Li, G.; Jing, C.; Xie, H.; Xu, H.; et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis. Appl. Phys. Lett. 2014, 104, 091106. [Google Scholar] [CrossRef]
- Zang, H.; Li, H.; Zhang, W.; Fu, Y.; Chen, S.; Xu, H.; Li, R. Robust and ultralow-energy-threshold ignition of a lean mixture by an ultrashort-pulsed laser in the filamentation regime. Light Sci. Appl. 2021, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Fibich, G.; Gaeta, A.L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 2000, 25, 335–337. [Google Scholar] [CrossRef]
- Chernev, P.; Petrov, V. Self-focusing of light pulses in the presence of normal group velocity dispersion. Opt. Lett. 1992, 17, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chin, S.L. Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air. Opt. Express 2005, 13, 5750–5755. [Google Scholar] [CrossRef]
- Kozlov, S.A.; Drozdov, A.A.; Choudhary, S.; Kniazev, M.A.; Boyd, R.W. Suppression of self-focusing for few-cycle pulses. J. Opt. Soc. Am. B 2019, 36, G68–G77. [Google Scholar] [CrossRef]
- Whalen, P.; Moloney, J.V.; Kolesik, M. Self-focusing collapse distance in ultrashort pulses and measurement of nonlinear index. Opt. Lett. 2011, 36, 2542–2544. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Danilov, P.A.; Kuzmin, E.V.; Gulina, Y.S.; Rupasov, A.E.; Krasin, G.K.; Zubarev, I.G.; Levchenko, A.O.; Kovalev, M.S.; Pakholchuk, P.P.; et al. Pulse-width-dependent critical power for self-focusing of ultrashort laser pulses in bulk dielectrics. Opt. Lett. 2022, 47, 3487–3490. [Google Scholar]
- Bernhardt, J.; Simard, P.T.; Liu, W.; Xu, H.L.; Théberge, F.; Azarm, A.; Daigle, J.F.; Chin, S.L. Critical power for self-focusing of a femtosecond laser pulse in helium. Opt. Commun. 2008, 281, 2248–2251. [Google Scholar] [CrossRef]
- Li, H.; Chu, W.; Zang, H.W.; Xu, H.L.; Cheng, Y.; Chin, S.L. Critical power and clamping intensity inside a filament in a flame. Opt. Express 2016, 24, 3424–3431. [Google Scholar] [CrossRef]
- Akturk, S.; D’Amico, C.; Franco, M.; Couairon, A.; Mysyrowicz, A. A simple method for determination of nonlinear propagation regimes in gases. Opt. Express 2007, 15, 15260–15267. [Google Scholar] [CrossRef]
- Ji, L.; Liang, W.; Li, D.; Chang, J.; Li, D.; Zhang, L.; Xi, T.; Hao, Z. Influence of a pinhole diameter on the experimental determination of critical power for femtosecond filamentation in air. Opt. Express 2022, 30, 44886–44895. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Zhang, Y.; Yu, M.; Wang, Y.; Liu, F.; Jin, M. Femtosecond filamentation in water studied by the interference of supercontinuum. Phys. Scr. 2023, 98, 015501. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Y.; Liang, C.; Chen, A.; Li, S.; Jin, M. Exploring the femtosecond filamentation threshold in liquid media using a Mach–Zehnder interferometer. Sensors 2023, 23, 9163. [Google Scholar] [CrossRef]
- Kruglov, V.; Logvin, Y.A.; Volkov, V. The theory of spiral laser beams in nonlinear media. J. Mod. Optic. 1992, 39, 2277–2291. [Google Scholar] [CrossRef]
- Fibich, G.; Gavish, N. Critical power of collapsing vortices. Phys. Rev. A 2008, 77, 045803. [Google Scholar] [CrossRef]
- Liang, W.; Li, D.; Chang, J.; Xi, T.; Ji, L.; Li, D.; Zhang, L.; Hao, Z. Experimentally determined critical power for self-focusing of femtosecond vortex beams in air by a fluorescence measurement. Opt. Express 2023, 31, 1557–1566. [Google Scholar] [CrossRef]
- Shimoji, Y.; Fay, A.T.; Chang, R.S.F.; Djeu, N. Direct measurement of the nonlinear refractive index of air. J. Opt. Soc. Am. B 1989, 6, 1994–1998. [Google Scholar] [CrossRef]
- McAllister, G.L.; Marburger, J.H.; DeShazer, L.G. Observation of optical pulse shaping by the self-focusing effects. Phys. Rev. Lett. 1968, 21, 1648–1649. [Google Scholar] [CrossRef]
- Chin, S.L.; Aközbek, N.; Proulx, A.; Petit, S.; Bowden, C.M. Transverse ring formation of a focused femtosecond laser pulse. Opt. Commun. 2001, 188, 181–186. [Google Scholar] [CrossRef]
- Geints, Y.É.; Zemlyanov, A.A.; Ionin, A.A.; Kudryashov, S.I.; Seleznev, L.V.; Sinitsyn, D.V.; Sunchugasheva, E.S. Peculiarities of filamentation of sharply focused ultrashort laser pulses in air. J. Exp. Theor. Phys. 2010, 111, 724–730. [Google Scholar] [CrossRef]
- Nishibata, I.; Nakanii, N.; Sano, T. Focusing characteristic change and processing characteristic evaluation of femtosecond-to-picosecond pulse lasers above the air ionization threshold. Opt. Continuum 2023, 2, 1735–1751. [Google Scholar] [CrossRef]
- Méchain, G.; D’Amico, C.; André, Y.-B.; Tzortzakis, S.; Franco, M.; Prade, B.; Mysyrowicz, A.; Couairon, A.; Salmon, E.; Sauerbrey, R. Range of plasma filaments created in air by a multi-terawatt femtosecond laser. Opt. Commun. 2005, 247, 171–180. [Google Scholar] [CrossRef]
- Available online: https://imagej.net/ (accessed on 27 December 2023).
- Yan, B.; Li, D.; Zhang, L.; Xi, T.; Cai, Y.; Hao, Z. Filamentation of femtosecond vortex laser pulses in turbulent air. Opt. Laser Technol. 2023, 164, 109515. [Google Scholar] [CrossRef]
- Li, D.; Liang, W.; Li, D.; Ji, L.; Yan, B.; Chang, J.; Xi, T.; Zhang, L.; Cai, Y.; Hao, Z. Distinguishing the nonlinear propagation regimes of vortex femtosecond pulses in fused silica by evaluating the broadened spectrum. Opt. Express 2023, 31, 32752–32760. [Google Scholar] [CrossRef]
- Xu, R.; Bai, Y.; Song, L.; Li, N.; Peng, P.; Tang, J.; Miao, T.; Liu, P.; Wang, Z.; Li, R. Self-focusing of few-cycle laser pulses at 1800 nm in air. J. Phys. B 2015, 48, 094015. [Google Scholar] [CrossRef]
- Lim, K.; Durand, M.; Baudelet, M.; Richardson, M. Transition from linear- to nonlinear-focusing regime in filamentation. Sci. Rep. 2014, 4, 7217. [Google Scholar] [CrossRef]
- Afonasenko, A.V.; Apeksimov, D.V.; Geints, Y.E.; Golik, S.S.; Kabanov, A.M.; Zemlyanov, A.A. Study of filamentation dynamics of ultrashort laser radiation in air: Beam diameter effect. J. Opt. 2014, 16, 105204. [Google Scholar] [CrossRef]
- Laban, D.E.; Wallace, W.C.; Glover, R.D.; Sang, R.T.; Kielpinski, D. Self-focusing in air with phase-stabilized few-cycle light pulses. Opt. Lett. 2010, 35, 1653–1655. [Google Scholar] [CrossRef] [PubMed]
- Polynkin, P.; Kolesik, M. Critical power for self-focusing in the case of ultrashort laser pulses. Phys. Rev. A 2013, 87, 053829. [Google Scholar] [CrossRef]
- Yin, F.; Wang, T.; Long, J.; Liu, Y.; Wei, Y.; Zhu, B.; Zhou, K.; Leng, Y.; Li, R. Pulse repetition rate effect on the intensity inside femtosecond laser filament in air. High Power Laser Sci. 2023, 11, E46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Hao, Z.; Yan, B.; Liu, F.; Li, D.; Chang, J.; Cai, Y.; Zhang, L. An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements. Photonics 2024, 11, 66. https://doi.org/10.3390/photonics11010066
Song H, Hao Z, Yan B, Liu F, Li D, Chang J, Cai Y, Zhang L. An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements. Photonics. 2024; 11(1):66. https://doi.org/10.3390/photonics11010066
Chicago/Turabian StyleSong, Huiting, Zuoqiang Hao, Bingxin Yan, Faqian Liu, Dongwei Li, Junwei Chang, Yangjian Cai, and Lanzhi Zhang. 2024. "An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements" Photonics 11, no. 1: 66. https://doi.org/10.3390/photonics11010066
APA StyleSong, H., Hao, Z., Yan, B., Liu, F., Li, D., Chang, J., Cai, Y., & Zhang, L. (2024). An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements. Photonics, 11(1), 66. https://doi.org/10.3390/photonics11010066