Sub-Nanosecond, High Peak Power Yb:YAG/Cr4+:YAG/YVO4 Passively Q-Switched Raman Microchip Laser with the Emission of Multiple Pulses
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
3.1. Influences of TOC on the Laser Behavior of the QCW End-Pumped Yb:YAG/Cr4+:YAG/YVO4 PQSRML with a Sandwich-Type Plane-Parallel Structure
3.2. Effects of Raman Crystal Length on Laser Performance of Yb:YAG/Cr4+:YAG/YVO4 PQSRML
3.3. Laser Performance of the Yb:YAG/Cr4+:YAG/YVO4 PQSRML with a Compact Plane–Concave Cavity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsunekane, M.; Inohara, T.; Ando, A.; Kido, N.; Kanehara, K.; Taira, T. High Peak Power, Passively Q-switched Microlaser for Ignition of Engines. IEEE J. Quantum Electron. 2010, 46, 277–284. [Google Scholar] [CrossRef]
- Zayhowski, J.J. Passively Q-switched Nd:YAG microchip lasers and applications. J. Alloys Compd. 2000, 303–304, 393–400. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycioglu, H.; Elahi, P.; Çetin, B.; Kesim, D.K.; Akçaalan, Ö.; Yavas, S.; Asik, M.D.; Öktem, B.; Hoogland, H.; et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.T.; Li, X.D.; Mei, F.; Chen, D.Y.; Yan, R.P. 30 mJ, 1 kHz sub-nanosecond burst-mode Nd:YAG laser MOPA system. Opt. Express 2019, 27, 36129–36136. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Bass, M.; Mao, Y.; Deng, P.; Gan, F. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet. J. Opt. Soc. Am. B Opt. Phys. 2003, 20, 1975–1979. [Google Scholar] [CrossRef]
- Dong, J.; Ueda, K.I.; Shirakawa, A.; Yagi, H.; Yanagitani, T.; Kaminskii, A.A. Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers. Opt. Express 2007, 15, 14516–14523. [Google Scholar] [CrossRef] [PubMed]
- Loiko, P.; Serres, J.M.; Mateos, X.; Yumashev, K.; Yasukevich, A.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F. Sub-nanosecond Yb:KLu(WO4)2 microchip laser. Opt. Lett. 2016, 41, 2620–2623. [Google Scholar] [CrossRef]
- Guo, X.Y.; Tokita, S.; Kawanaka, J. High beam quality and high peak power Yb:YAG/Cr:YAG microchip laser. Opt. Express 2019, 27, 45–54. [Google Scholar] [CrossRef]
- Bhandari, R.; Taira, T. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser. Opt. Express 2011, 19, 19135–19141. [Google Scholar] [CrossRef]
- Bhandari, R.; Taira, T.; Miyamoto, A.; Furukawa, Y.; Tago, T. >3 MW peak power at 266 nm using Nd:YAG/Cr4+:YAG microchip laser and fluxless-BBO. Opt. Mater. Express 2012, 2, 907–913. [Google Scholar] [CrossRef]
- Bhandari, R.; Tsuji, N.; Suzuki, T.; Nishifuji, M.; Taira, T. Efficient second to ninth harmonic generation using megawatt peak power microchip laser. Opt. Express 2013, 21, 28849–28855. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, X.; Zhou, C.L.; Huang, G.H.; He, Z.P.; Shu, R. 150 kHz, 300 ps green laser frequency doubled from a linearly polarized passively Q-switched Nd:YAG/Cr4+:YAG microchip oscillator and a Nd:YVO4 amplifier. Opt. Laser Technol. 2022, 147, 107708. [Google Scholar] [CrossRef]
- Meng, D.D.; Wang, T.Q.; Zhou, M.; Qiao, Z.D.; Liu, X.L.; Fan, Z.W. High Repetition Rate, TEM00 Mode, Compact Sub-Nanosecond 532 nm Laser. Appl. Sci. 2022, 12, 10. [Google Scholar] [CrossRef]
- Mildren, R.P.; Convery, M.; Pask, H.M.; Piper, J.A.; McKay, T. Efficient, all-solid-state, Raman laser in the yellow, orange and red. Opt. Express 2004, 12, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Pask, H.M.; Piper, J.A.; Zhang, H.J.; Wang, J.Y. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission. Opt. Express 2010, 18, 5984–5992. [Google Scholar] [CrossRef] [PubMed]
- Hawley, T.S.; Telford, W.G.; Ramezani, A.; Hawley, R.G. Four-color flow cytometric detection of retrovirally expressed red, yellow, green, and cyan fluorescent proteins. BioTechniques 2001, 30, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Bevis, B.J.; Glick, B.S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 2002, 20, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Telford, W.; Murga, M.; Hawley, T.; Hawley, R.; Packard, B.; Komoriya, A.; Haas, F.; Hubert, C. DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry. Cytom. Part A 2005, 68A, 36–44. [Google Scholar] [CrossRef]
- Telford, W.G.; Babin, S.A.; Khorev, S.V.; Rowe, S.H. Green fiber lasers: An alternative to traditional DPSS green lasers for flow cytometry. Cytom. Part A 2009, 75A, 1031–1039. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Ueda, K.; Eichler, H.J.; Kuwano, Y.; Kouta, H.; Bagaev, S.N.; Chyba, T.H.; Barnes, J.C.; Gad, G.M.A.; Murai, T.; et al. Tetragonal vanadates YVO4 and GdVO4—New efficient χ(3)-materials for Raman lasers. Opt. Commun. 2001, 194, 201–206. [Google Scholar] [CrossRef]
- Chen, Y.F. Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser. Opt. Lett. 2004, 29, 1251–1253. [Google Scholar] [CrossRef]
- Kisel, V.E.; Troshin, A.E.; Tolstik, N.A.; Shcherbitsky, V.G.; Kuleshov, N.V.; Matrosov, V.N.; Matrosova, T.A.; Kupchenko, M.I. Q-switched Yb3+:YVO4 laser with Raman self-conversion. Appl. Phys. B Lasers Opt. 2005, 80, 471–473. [Google Scholar] [CrossRef]
- Ding, S.H.; Wang, M.Q.; Wang, S.Q.; Zhang, W.H. Investigation on LD end-pumped passively Q-switched c-cut Nd:YVO4 self-Raman laser. Opt. Express 2013, 21, 13052–13061. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, Z.; Zhu, S.Q.; Yin, H.; Chen, Z.Q.; Zhang, G.; Chen, W.D. YVO4 Raman laser pumped by a passively Q-switched Yb:YAG laser. Opt. Express 2017, 25, 14033–14042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, L.; Miao, Y.; Dong, J. Elliptically polarized, nanosecond dual-pulse Raman laser with tunable pulse interval and pulse amplitude ratio. Opt. Laser Technol. 2024, 171, 110397. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, X.J.; Dong, J. Multiwavelength, sub-Nanosecond Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 8. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, X.J.; Dong, J. Sub-nanosecond, high peak power Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman micro-laser operating at 1134 nm. J. Lumin. 2021, 234, 11. [Google Scholar] [CrossRef]
- Ma, Y.F.; Li, X.D.; Yu, X.; Fan, R.W.; Yan, R.P.; Peng, J.B.; Xu, X.R.; Sun, R.; Chen, D.Y. A novel miniaturized passively Q-switched pulse-burst laser for engine ignition. Opt. Express 2014, 22, 24655–24665. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.F.; He, Y.; Yu, X.; Li, X.D.; Li, J.; Yan, R.P.; Peng, J.B.; Zhang, X.L.; Sun, R.; Pan, Y.B.; et al. Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping. Opt. Express 2015, 23, 24955–24961. [Google Scholar] [CrossRef]
- Bourdon, P.; Planchat, C.; Fleury, D.; Le Gouet, J.; Gustave, F.; Dolfi-Bouteyre, A.; Lombard, L.; Durécu, A.; Jacqmin, H. Passively cooled Cr:YAG Q-switched Yb:YAG micro-laser delivering continuously tunable high repetition rate bursts of short pulses. In Proceedings of the Conference on Solid State Lasers XXVIII—Technology and Devices, SPIE—The International Society for Optical Engineering, San Francisco, CA, USA, 5–7 February 2019. [Google Scholar]
- Shpak, P.V.; Voitikov, S.V.; Demidovich, A.A.; Danailov, M.B.; Orlovich, V.A. Coupled-cavity passively Q-switched two-Stokes microchip laser. Appl. Phys. B Lasers Opt. 2012, 108, 269–281. [Google Scholar] [CrossRef]
- Liu, S.D.; Gao, Z.L.; Zhang, J.J.; Zhang, B.T.; He, J.L.; Tao, X.T. An α-BaTeMo2O9 Raman Shifting Driven by a Pulsed LD Pumped Nd:YAG Laser. IEEE Photon. Technol. Lett. 2014, 26, 158–161. [Google Scholar] [CrossRef]
- Bai, S.C.; Qiao, X.H.; Sun, P.; Wang, X.L.; Dong, J. High peak power, multi-wavelength, passively Q-switched Raman lasers based on Yb:YAG/Cr4+:YAG composite crystal. Laser Phys. 2020, 30, 6. [Google Scholar] [CrossRef]
- Pask, H.M. The design and operation of solid-state Raman lasers. Prog. Quantum Electron. 2003, 27, 3–56. [Google Scholar] [CrossRef]
- Bass, M.; Weichman, L.S.; Vigil, S.; Brickeen, B.K. The temperature dependence of Nd3+ doped solid-state lasers. IEEE J. Quantum Electron. 2003, 39, 741–748. [Google Scholar] [CrossRef]
- Tsunekane, M.; Taira, T. Temperature and Polarization Dependences of Cr:YAG Transmission for Passive Q-switching. In Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2009), Baltimore, MD, USA, 2–4 June 2009; p. JTuD8. [Google Scholar]
- Zverev, P.G. The influence of temperature on Raman modes in YVO4 and GdVO4 crystals. J. Phys. Conf. Ser. 2007, 92, 012073. [Google Scholar] [CrossRef]
- Loiko, P.; Serres, J.M.; Mateos, X.; Jambunathan, V.; Yumashev, K.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F. Passive Q-switching and self-Raman conversion in Yb:KLu(WO4)2 microchip laser. In Proceedings of the European Conference on Lasers and Electro-Optics, Optical Society of America, Munich, Germany, 21–25 June 2015; p. CA_5b_3. [Google Scholar]
- Liu, J.H.; Petrov, V.; Zhang, H.J.; Wang, J.Y. Power scaling of a continuous-wave and passively Q-switched Yb:KLu(WO4)2 laser end-pumped by a high-power diode. Appl. Phys. B Lasers Opt. 2007, 88, 527–530. [Google Scholar] [CrossRef]
- Kisel, V.E.; Shcherbitsky, V.G.; Kuleshov, N.V. Efficient self-frequency Raman conversion in a passively Q-switched diode-pumped Yb:KGd(WO4)2 laser. In Proceedings of the Advanced Solid-State Photonics Conference, San Antonio, TX, USA, 2–5 February 2003; pp. 189–192. [Google Scholar]
- Wang, X.J.; Wang, X.L.; Zheng, Z.F.; Qiao, X.H.; Dong, J. 1164.4 nm and 1174.7 nm dual-wavelength Nd:GdVO4/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser. Appl. Opt. 2018, 57, 3198–3204. [Google Scholar] [CrossRef] [PubMed]
TOC, % | Et, mJ | R.R., kHz | ES, μJ | Ppeak, kW | tS, ps |
---|---|---|---|---|---|
11 | 1.7 | 225 | 15.9 | 24.2 | 650 |
16 | 1.8 | 184 | 13.8 | 19.8 | 678 |
lR, mm | Et, mJ | R.R., kHz | ES, μJ | Ppeak, kW | tS, ps |
---|---|---|---|---|---|
4 | 1.8 | 184 | 13.8 | 19.8 | 678 |
5 | 1.65 | 167 | 14.7 | 26.4 | 510 |
Crystal | Cavity Type | Pumping | Raman Properties | Ref. |
---|---|---|---|---|
Yb:YAG/YVO4 | plane-parallel | QCW | 1134 nm, 44 μJ, 95 kW, 460 ps, 87.8 kHz | This work |
plane-concave | 1134 nm, 14.7μJ, 26.4 kW, 510 ps, 167 kHz | |||
Yb:YAG/YVO4 | plane-parallel | CW | 1134 nm, 24.1μJ, 45.1 kW, 505 ps, 5.6 kHz | [27] |
Yb:YAG/YVO4 | plane-concave | QCW | 1134 nm, 50 μJ, 56.9 kW, 880 ps, 42.6 kHz | [33] |
Yb:YAG/YVO4 | plane-concave | CW | 1079–1260 nm, 4.04 μJ, 9.2 kW, 440 ps, 20.3 kHz | [26] |
Yb:KLuW | plane-parallel | CW | 1151 nm, 3 μJ, 1.5 kW, 2 ns, 39 kHz | [38] |
Yb:KLuW | plane-concave | CW | 1139.3 nm, 51 μJ, 22.2 kW, 2.3 ns, 26.3 kHz | [39] |
Yb:KGW | plane-concave | CW | 1145 nm, 8.2 μJ, 11 kW, 700 ps, 13.3 kHz | [40] |
Nd:GdVO4/YVO4 | plane-parallel | CW | 1164.4 nm, 1174.7 nm, 0.83 μJ, 1 kW, 825 ps, 48 kHz | [41] |
Nd:YAG/Ba(NO3)2 | plane-parallel | QCW | 1369 nm, 5 μJ, 50 kW, 100 ps, 24 kHz | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, C.; Zhang, Y.; Fan, S.; Ma, X.; Cheng, W. Sub-Nanosecond, High Peak Power Yb:YAG/Cr4+:YAG/YVO4 Passively Q-Switched Raman Microchip Laser with the Emission of Multiple Pulses. Photonics 2024, 11, 61. https://doi.org/10.3390/photonics11010061
Wang X, Zhang C, Zhang Y, Fan S, Ma X, Cheng W. Sub-Nanosecond, High Peak Power Yb:YAG/Cr4+:YAG/YVO4 Passively Q-Switched Raman Microchip Laser with the Emission of Multiple Pulses. Photonics. 2024; 11(1):61. https://doi.org/10.3390/photonics11010061
Chicago/Turabian StyleWang, Xiaolei, Chaoyi Zhang, Yanlu Zhang, Shengying Fan, Xinqiang Ma, and Wei Cheng. 2024. "Sub-Nanosecond, High Peak Power Yb:YAG/Cr4+:YAG/YVO4 Passively Q-Switched Raman Microchip Laser with the Emission of Multiple Pulses" Photonics 11, no. 1: 61. https://doi.org/10.3390/photonics11010061
APA StyleWang, X., Zhang, C., Zhang, Y., Fan, S., Ma, X., & Cheng, W. (2024). Sub-Nanosecond, High Peak Power Yb:YAG/Cr4+:YAG/YVO4 Passively Q-Switched Raman Microchip Laser with the Emission of Multiple Pulses. Photonics, 11(1), 61. https://doi.org/10.3390/photonics11010061