Visible Light Communications: A Survey on Recent High-Capacity Demonstrations and Digital Modulation Techniques
Abstract
:1. Introduction
2. Progress on Standardization and VLC Applications Scenarios
2.1. VLC Standardization
2.2. VLC Application Scenarios
2.2.1. Indoor Wireless Communications
2.2.2. Underwater Wireless Communications
2.2.3. Vehicular Communications
2.2.4. Visible Light Positioning with Integrated Communications
3. Modulation Techniques for Visible Light Communications
3.1. Single-Carrier Techniques
3.1.1. On–Off Keying and Pulse Amplitude Modulation
3.1.2. Carrier-Less Amplitude and Phase Modulation
3.1.3. Pulse Width/Position Modulation
3.1.4. Color-Shift Keying
3.2. Multi-Carrier Techniques
3.2.1. Orthogonal Frequency Division Multiplexing
3.2.2. Modified OFDM Waveforms
3.2.3. Generalized Frequency Division Multiplexing
3.2.4. Digital Subcarrier Multiplexing
3.3. VLC MIMO Systems
4. Capacity-Achieving Strategies
4.1. Bit Loading and Power Loading
4.2. Entropy Loading
4.3. Geometric Constellation Shaping
5. Summary and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACO-OFDM | Asymmetrically Clipped Optical Orthogonal Frequency Division Multiplexing |
ADSL | Asymmetric Digital Subscriber Line |
AOA | Angle Of Arrival |
AWGN | Additive White Gaussian Noise |
BER | Bit Error Rate |
BL | Bit Loading |
CAP | Carrier-less Amplitude and Phase modulation |
CCDM | Constant Composition Distribution Matcher |
CIE | Commission Internationale de l’éclairage |
CP | Cyclic Prefix |
CRI | Color-Rending Index |
CSK | Color-Shift Keying |
DCO-OFDM | DC-biased Optical Orthogonal Frequency Division Multiplexing |
DM | Distribution Matcher |
DMT | Discrete Multitone |
DSCM | Digital Subcarrier Multiplexing |
DSP | Digital Signal Processing |
EL | Entropy Loading |
FBMC | Filter Bank Multi-Carrier |
FEC | Forward Error Correction |
FFT | Fast Fourier Transform |
FSO | Free-Space Optics |
GCS | Geometric Constellation Shaping |
GFDM | Generalized Frequency Division Multiplexing |
GPS | Global Positioning System |
HB | High Bandwidth |
IDFT | Inverse Discrete Fourier Transform |
IFFT | Inverse Fast Fourier Transform |
IM-DD | Intensity Modulated Direct Detection |
ISI | Inter-Symbol Interference |
JEITA | Japan Electronics and Information Technology Industries Association |
LD | Laser Diode |
LED | Light-Emitting Diode |
MAC | Media Access Control |
MIMO | Multiple-Input, Multiple-Output |
MPPM | Multi-Pulse Position Modulation |
OFDM | Orthogonal Frequency Division Multiplexing |
OOB | Out-Of-Band |
OOK | On–Off Keying |
OPPM | Overlapping Pulse Position Modulation |
OSTBC | Orthogonal Space–Time Block Code |
PCS | Probabilistic Constellation Shaping |
PHY | Physical |
PM | Pulse Modulation |
PAM | Pulse Amplitude Modulation |
PAPR | Peak-to-Average-Power Ratio |
PL | Power Loading |
PPM | Pulse Position Modulation |
PWM | Pulse Width Modulation |
QAM | Quadrature Amplitude Modulation |
RC | Repetition Coding |
RF | Radio Frequency |
RGB | Red, Green, and Blue |
RGBCY | Red, Green, Blue, Cyan, and Yellow |
RGV | Red, Green, and Violet |
ROADM | Reconfigurable Optical Add–Drop Multiplexer |
RRC | Root-Raised Cosine |
RSS | Received Signal Strength |
SM | Spatial Modulation |
SMP | Spatial Multiplexing |
SNR | Signal-to-Noise Ratio |
TGbb | Task Group bb |
TOA | Time Of Arrival |
UWOC | Underwater Optical Communications |
VPPM | Variable-Pulse-Position Modulation |
VLC | Visible Light Communications |
VLCC | Visible Light Communication Consortium |
WDM | Wavelength Division Multiplexing |
References
- Gupta, A.; Jha, R. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Chun, H.; Gomez, A.; Quintana, C.; Zhang, W.; Faulkner, G.; O’Brien, D. A Wide-Area Coverage 35 Gb/s Visible Light Communications Link for Indoor Wireless Applications. Sci. Rep. 2019, 9, 4952. [Google Scholar] [CrossRef]
- Karunatilaka, D.; Zafar, F.; Kalavally, V.; Parthiban, R. LED Based Indoor Visible Light Communications: State of the Art. IEEE Commun. Surv. Tutor. 2015, 17, 1649–1678. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Monteiro, P.P.; Guiomar, F.P. Free-Space Terabit Optical Interconnects. J. Lightwave Technol. 2022, 40, 1519–1526. [Google Scholar] [CrossRef]
- Guiomar, F.P.; Fernandes, M.A.; Nascimento, J.L.; Rodrigues, V.; Monteiro, P.P. Coherent Free-Space Optical Communications: Opportunities and Challenges. J. Lightwave Technol. 2022, 40, 3173–3186. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Khan, L.U. Visible Light Communication: Applications, Architecture, Standardization and Research Challenges. Digit. Commun. Netw. 2017, 3, 78–88. [Google Scholar] [CrossRef]
- IEEE Std 802.15.7-2011; IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light. IEEE: Piscataway, NJ, USA, 2011; pp. 1–309. [CrossRef]
- Rajagopal, S.; Roberts, R.D.; Lim, S.K. IEEE 802.15.7 visible light communication: Modulation schemes and dimming support. IEEE Commun. Mag. 2012, 50, 72–82. [Google Scholar] [CrossRef]
- Bober, K.L.; Ackermann, E.; Freund, R.; Jungnickel, V.; Baykas, T.; Lim, S.K. The IEEE 802.15.13 Standard for Optical Wireless Communications in Industry 4.0. In Proceedings of the IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Jungnickel, V. Standardization of Li-Fi in IEEE 802.15.13. Fraunhofer HHI. 2018. Available online: https://www.hhi.fraunhofer.de/fileadmin/Departments/PN/MAI/Li-Fi_Standardization_Presentation.pdf (accessed on 30 May 2023).
- Khorov, E.; Levitsky, I. Current Status and Challenges of Li-Fi: IEEE 802.11bb. IEEE Commun. Stand. Mag. 2022, 6, 35–41. [Google Scholar] [CrossRef]
- Online. Our Solutions. pureLiFi. 2023. Available online: https://www.purelifi.com/our-solutions/ (accessed on 4 July 2023).
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible Light Communication in 6G: Advances, Challenges, and Prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Tanaka, Y.; Haruyama, S.; Nakagawa, M. Wireless optical transmissions with white colored LED for wireless home links. In Proceedings of the 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications, PIMRC 2000, Proceedings (Cat. No.00TH8525), London, UK, 18–21 September 2000; Volume 2, pp. 1325–1329. [Google Scholar] [CrossRef]
- Tanaka, Y.; Komine, T.; Haruyama, S.; Nakagawa, M. Indoor visible light data transmission system utilizing white LED lights. IEICE Trans. Commun. 2003, E86B, 2440–2454. [Google Scholar]
- Vucic, J.; Kottke, C.; Nerreter, S.; Langer, K.D.; Walewski, J.W. 513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED. J. Lightwave Technol. 2010, 28, 3512–3518. [Google Scholar] [CrossRef]
- Wu, F.M.; Lin, C.T.; Wei, C.C.; Chen, C.W.; Huang, H.T.; Ho, C.H. 1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation. IEEE Photonics Technol. Lett. 2012, 24, 1730–1732. [Google Scholar] [CrossRef]
- Bian, R.; Tavakkolnia, I.; Haas, H. 15.73 Gb/s Visible Light Communication with Off-the-Shelf LEDs. J. Lightwave Technol. 2019, 37, 2418–2424. [Google Scholar] [CrossRef]
- Gutema, T.Z.; Haas, H.; Popoola, W.O. WDM Based 10.8 Gbps Visible Light Communication with Probabilistic Shaping. J. Lightwave Technol. 2022, 40, 5062–5069. [Google Scholar] [CrossRef]
- Hu, J.; Hu, F.; Jia, J.; Li, G.; Shi, J.; Zhang, J.; Li, Z.; Chi, N.; Yu, S.; Shen, C. 46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter. Opt. Express 2022, 30, 4365–4373. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, P.A.; Guiomar, F.P.; Monteiro, P.P. 25G+ Distance-Adaptive Visible Light Communications Enabled by Entropy Loading. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 5–9 March 2023; p. M4F.1. [Google Scholar] [CrossRef]
- Wu, T.C.; Chi, Y.C.; Wang, H.Y.; Tsai, C.T.; Lin, G.R. Blue Laser Diode Enables Underwater Communication at 12.4 Gbps. Sci. Rep. 2017, 7, 40480. [Google Scholar] [CrossRef]
- Li, B.; Huang, J.; Zhou, S.; Ball, K.; Stojanovic, M.; Freitag, L.; Willett, P. MIMO-OFDM for High-Rate Underwater Acoustic Communications. IEEE J. Ocean. Eng. 2009, 34, 634–644. [Google Scholar] [CrossRef]
- Song, H.C.; Hodgkiss, W.S. Efficient use of bandwidth for underwater acoustic communication. J. Acoust. Soc. Am. 2013, 134, 905–908. [Google Scholar] [CrossRef]
- Zakharov, Y.V.; Morozov, A.K. OFDM Transmission without Guard Interval in Fast-Varying Underwater Acoustic Channels. IEEE J. Ocean. Eng. 2015, 40, 144–158. [Google Scholar] [CrossRef]
- Ali, M.F.; Jayakody, D.N.K.; Li, Y. Recent Trends in Underwater Visible Light Communication (UVLC) Systems. IEEE Access 2022, 10, 22169–22225. [Google Scholar] [CrossRef]
- Oubei, H.M.; Duran, J.R.; Janjua, B.; Wang, H.Y.; Tsai, C.T.; Chi, Y.C.; Ng, T.K.; Kuo, H.C.; He, J.H.; Alouini, M.S.; et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 2015, 23, 23302–23309. [Google Scholar] [CrossRef]
- Shi, J.; Zhu, X.; Wang, F.; Zou, P.; Zhou, Y.; Liu, J.; Jiang, F.; Chi, N. Net Data Rate of 14.6 Gbit/s Underwater VLC Utilizing Silicon Substrate Common-Anode Five Primary Colors LED. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Kaushal, H.; Kaddoum, G. Underwater Optical Wireless Communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Spagnolo, G.; Cozzella, L.; Leccese, F. Underwater Optical Wireless Communications: Overview. Sensors 2020, 20, 2261. [Google Scholar] [CrossRef] [PubMed]
- Vappangi, S.; Mani, V.V.; Sellathurai, M. VLC for Vehicular Communications. In Visible Light Communication: Comprehensive Theory and Applications with MATLAB; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Wang, N.; Qiao, Y.; Wang, W.; Tang, S.; Shen, J. Visible Light Communication based Intelligent Traffic Light System: Designing and Implementation. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Marabissi, D.; Mucchi, L.; Caputo, S.; Nizzi, F.; Pecorella, T.; Fantacci, R.; Nawaz, T.; Seminara, M.; Catani, J. Experimental Measurements of a Joint 5G-VLC Communication for Future Vehicular Networks. J. Sens. Actuator Netw. 2020, 9, 32. [Google Scholar] [CrossRef]
- Béchadergue, B.; Chassagne, L.; Guan, H. Experimental comparison of pulse-amplitude and spatial modulations for vehicle-to-vehicle visible light communication in platoon configurations. Opt. Express 2017, 25, 24790–24802. [Google Scholar] [CrossRef]
- Avătămăniței, S.A.; Beguni, C.; Căilean, A.M.; Dimian, M.; Popa, V. Evaluation of Misalignment Effect in Vehicle-to-Vehicle Visible Light Communications: Experimental Demonstration of a 75 Meters Link. Sensors 2021, 21, 3577. [Google Scholar] [CrossRef]
- Kouhini, S.M.; Kottke, C.; Ma, Z.; Freund, R.; Jungnickel, V.; Müller, M.; Behnke, D.; Vazquez, M.M.; Linnartz, J.P.M.G. LiFi Positioning for Industry 4.0. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–15. [Google Scholar] [CrossRef]
- Kouhini, S.M.; Ma, Z.; Kottke, C.; Mana, S.M.; Freund, R.; Jungnickel, V. LiFi based Positioning for Indoor Scenarios. In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Kottke, C.; Ma, Z.; Kouhini, S.M.; Jungnickel, V. In-building Optical Wireless Positioning Using Time of Flight. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Du, P.; Zhang, S.; Chen, C.; Yang, H.; Zhong, W.D.; Zhang, R.; Alphones, A.; Yang, Y. Experimental Demonstration of 3D Visible Light Positioning Using Received Signal Strength with Low-Complexity Trilateration Assisted by Deep Learning Technique. IEEE Access 2019, 7, 93986–93997. [Google Scholar] [CrossRef]
- Hong, C.Y.; Wu, Y.C.; Liu, Y.; Chow, C.W.; Yeh, C.H.; Hsu, K.L.; Lin, D.C.; Liao, X.L.; Lin, K.H.; Chen, Y.Y. Angle-of-Arrival (AOA) Visible Light Positioning (VLP) System Using Solar Cells with Third-Order Regression and Ridge Regression Algorithms. IEEE Photonics J. 2020, 12, 1–5. [Google Scholar] [CrossRef]
- Do, T.H.; Yoo, M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors 2016, 16, 678. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Alves, L.N.; Ghassemblooy, Z. Current Trends on Visible Light Positioning Techniques. In Proceedings of the 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC), Tehran, Iran, 27–28 April 2019; pp. 100–105. [Google Scholar] [CrossRef]
- Tsonev, D.; Videv, S.; Haas, H. Light fidelity (Li-Fi): Towards all-optical networking. Proc. SPIE Int. Soc. Opt. Eng. 2013, 9007, 900702. [Google Scholar] [CrossRef]
- Le Minh, H.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y. High-Speed Visible Light Communications Using Multiple-Resonant Equalization. IEEE Photonics Technol. Lett. 2008, 20, 1243–1245. [Google Scholar] [CrossRef]
- Vucic, J.; Kottke, C.; Nerreter, S.; Habel, K.; Buttner, A.; Langer, K.D.; Walewski, J.W. 125 Mbit/s over 5 m wireless distance by use of OOK-Modulated phosphorescent white LEDs. In Proceedings of the 2009 35th European Conference on Optical Communication, Vienna, Austria, 20–24 September 2009; pp. 1–2. [Google Scholar]
- Stepniak, G.; Siuzdak, J.; Zwierko, P. Compensation of a VLC Phosphorescent White LED Nonlinearity by Means of Volterra DFE. IEEE Photonics Technol. Lett. 2013, 25, 1597–1600. [Google Scholar] [CrossRef]
- Stepniak, G.; Maksymiuk, L.; Siuzdak, J. 1.1 GBIT/S white lighting LED-based visible light link with pulse amplitude modulation and Volterra DFE equalization. Microw. Opt. Technol. Lett. 2015, 57, 1620–1622. [Google Scholar] [CrossRef]
- Li, X.; Bamiedakis, N.; Wei, J.; McKendry, J.J.D.; Xie, E.; Ferreira, R.; Gu, E.; Dawson, M.D.; Penty, R.V.; White, I.H. μLED-Based Single-Wavelength Bi-directional POF Link with 10 Gb/s Aggregate Data Rate. J. Lightwave Technol. 2015, 33, 3571–3576. [Google Scholar] [CrossRef]
- Wu, F.M.; Lin, C.T.; Wei, C.C.; Chen, C.W.; Chen, Z.Y.; Huang, H.T.; Chi, S. Performance Comparison of OFDM Signal and CAP Signal over High Capacity RGB-LED-Based WDM Visible Light Communication. IEEE Photonics J. 2013, 5, 7901507. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. 8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Long, S.; Bourennane, S.; Ghassemlooy, Z. PAM- and CAP-Based Transmission Schemes for Visible-Light Communications. IEEE Access 2017, 5, 27002–27013. [Google Scholar] [CrossRef]
- Olmedo, M.I.; Zuo, T.; Jensen, J.B.; Zhong, Q.; Xu, X.; Popov, S.; Monroy, I.T. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links. J. Lightwave Technol. 2014, 32, 798–804. [Google Scholar] [CrossRef]
- Haigh, P.A.; Burton, A.; Werfli, K.; Minh, H.L.; Bentley, E.; Chvojka, P.; Popoola, W.O.; Papakonstantinou, I.; Zvanovec, S. A Multi-CAP Visible-Light Communications System with 4.85-b/s/Hz Spectral Efficiency. IEEE J. Sel. Areas Commun. 2015, 33, 1771–1779. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, J.; Trescases, O. A dimmable LED driver for visible light communication (VLC) based on LLC resonant DC-DC converter operating in burst mode. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 2144–2150. [Google Scholar] [CrossRef]
- Wu, X.; Soltani, M.D.; Zhou, L.; Safari, M.; Haas, H. Hybrid LiFi and WiFi Networks: A Survey. arXiv 2020, arXiv:2001.04840. [Google Scholar] [CrossRef]
- Monteiro, E.; Hranilovic, S. Design and Implementation of Color-Shift Keying for Visible Light Communications. J. Lightwave Technol. 2014, 32, 2053–2060. [Google Scholar] [CrossRef]
- CIE. Commission Internationale de lEclairage Proc; Cambridge University Press: Cambridge, UK, 1931. [Google Scholar]
- Drost, R.J.; Sadler, B.M. Constellation design for color-shift keying using billiards algorithms. In Proceedings of the 2010 IEEE Globecom Workshops, Miami, FL, USA, 6–10 December 2010; pp. 980–984. [Google Scholar] [CrossRef]
- Monteiro, E.; Hranilovic, S. Constellation design for color-shift keying using interior point methods. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 1224–1228. [Google Scholar] [CrossRef]
- Singh, R.; O’Farrell, T.; David, J.P.R. An Enhanced Color Shift Keying Modulation Scheme for High-Speed Wireless Visible Light Communications. J. Lightwave Technol. 2014, 32, 2582–2592. [Google Scholar] [CrossRef]
- Gerzaguet, R.; Bartzoudis, N.; Baltar, L.; Berg, V.; Doré, J.B.; Ktenas, D.; Font-Bach, O.; Mestre, X.; Payaro, M.; Färber, M.; et al. The 5G candidate waveform race: A comparison of complexity and performance. EURASIP J. Wirel. Commun. Netw. 2017, 2017, 13. [Google Scholar] [CrossRef]
- Afgani, M.; Haas, H.; Elgala, H.; Knipp, D. Visible light communication using OFDM. In Proceedings of the 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, TRIDENTCOM 2006, Barcelona, Spain, 1–3 March 2006; pp. 6–134. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for Optical Communications. J. Lightwave Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H.; Pricope, B. OFDM Visible Light Wireless Communication Based on White LEDs. In Proceedings of the 2007 IEEE 65th Vehicular Technology Conference—VTC2007-Spring, Dublin, Ireland, 22–25 April 2007; pp. 2185–2189. [Google Scholar] [CrossRef]
- Armstrong, J.; Lowery, A. Power efficient optical OFDM. Electron. Lett. 2006, 42, 370–372. [Google Scholar] [CrossRef]
- Mesleh, R.; Elgala, H.; Haas, H. Performance analysis of indoor OFDM optical wireless communication systems. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 1–4 April 2012; pp. 1005–1010. [Google Scholar] [CrossRef]
- Fernando, N.; Hong, Y.; Viterbo, E. Flip-OFDM for optical wireless communications. In Proceedings of the 2011 IEEE Information Theory Workshop, Paraty, Brazil, 16–20 October 2011; pp. 5–9. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H. Predistortion in Optical Wireless Transmission Using OFDM. In Proceedings of the 2009 Ninth International Conference on Hybrid Intelligent Systems, Shenyang, China, 12–14 August 2009; Volume 2, pp. 184–189. [Google Scholar] [CrossRef]
- He, C.; Armstrong, J. Clipping Noise Mitigation in Optical OFDM Systems. IEEE Commun. Lett. 2017, 21, 548–551. [Google Scholar] [CrossRef]
- He, C.; Lim, Y. Clipping Noise Mitigation in Optical OFDM Using Decision-Directed Signal Reconstruction. IEEE Access 2021, 9, 115388–115402. [Google Scholar] [CrossRef]
- Wei, L.Y.; Hsu, C.W.; Chow, C.W.; Yeh, C.H. 20.231 Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system. Photonics Res. 2018, 6, 422–426. [Google Scholar] [CrossRef]
- Wu, Y.C.; Su, C.Y.; Wang, H.Y.; Cheng, C.H.; Lin, G.R. Miniature R/G/V-LDs+Y-LED Mixed White-Lighting Module with High-Lux and High-CRI for 20-Gbps Li-Fi. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Lee, C.; Islim, M.S.; Das, S.; Spark, A.; Videv, S.; Rudy, P.; Shah, B.; McLaurin, M.; Haas, H.; Raring, J. 26 Gbit/s LiFi System with Laser-Based White Light Transmitter. J. Lightwave Technol. 2022, 40, 1432–1439. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, F.; Shi, M.; Chi, N.; Liu, J.; Jiang, F. 10.72Gb/s Visible Light Communication System Based on Single Packaged RGBYC LED Utilizing QAM-DMT Modulation with Hardware Pre-Equalization. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Wang, W.C.; Cheng, C.H.; Wang, H.Y.; Lin, G.R. White-light color conversion with red/green/violet laser diodes and yellow light-emitting diode mixing for 34.8 Gbit/s visible lighting communication. Photonics Res. 2020, 8, 1398–1408. [Google Scholar] [CrossRef]
- Cheng, C.H.; Wu, Y.C.; Tsai, C.T.; Wang, H.Y.; Lin, G.R. Four-Color LD+LED Lighting Module for 30-Gbps Visible Wavelength Division Multiplexing Data Transmission. In Proceedings of the 2020 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 10–15 May 2020; pp. 1–2. [Google Scholar]
- Gunawan, W.H.; Liu, Y.; Chow, C.W.; Chang, Y.H.; Peng, C.W.; Yeh, C.H. Two-Level Laser Diode Color-Shift-Keying Orthogonal-Frequency-Division-Multiplexing (LD-CSK-OFDM) for Optical Wireless Communications (OWC). J. Lightwave Technol. 2021, 39, 3088–3094. [Google Scholar] [CrossRef]
- Zhang, T.; Ghassemlooy, Z.; Rajbhandari, S.; Popoola, W.O.; Guo, S. OFDM-PWM scheme for visible light communications. Opt. Commun. 2017, 385, 213–218. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Ghassemlooy, Z.; Olyaee, S. Investigation of a hybrid OFDM-PWM/PPM visible light communications system. Opt. Commun. 2018, 429, 65–71. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Zhang, W.; Wang, C.X. Filtered-OFDM for Visible Light Communications. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Beijing, China, 16–18 August 2018; pp. 227–231. [Google Scholar] [CrossRef]
- Jung, S.Y.; Kwon, D.H.; Yang, S.H.; Han, S.K. Inter-cell interference mitigation in multi-cellular visible light communications. Opt. Express 2016, 24, 8512–8526. [Google Scholar] [CrossRef]
- Chen, M.; Cai, Y.; Zhou, J.; Zhou, H.; Liu, Y.; Chen, Q. Bandwidth enhancement with DAC-enabled pre-equalization and real-valued precoding for a FBMC-VLC. Opt. Lett. 2022, 47, 4826–4829. [Google Scholar] [CrossRef]
- Abdoli, J.; Jia, M.; Ma, J. Filtered OFDM: A new waveform for future wireless systems. In Proceedings of the 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 28 June–1 July 2015; pp. 66–70. [Google Scholar] [CrossRef]
- Kishore, V.; Valluri, S.P.; Vakamulla, V.M.; Sellathurai, M.; Kumar, A.; Ratnarajah, T. Performance Analysis under Double Sided Clipping and Real Time Implementation of DCO-GFDM in VLC Systems. J. Lightwave Technol. 2021, 39, 33–41. [Google Scholar] [CrossRef]
- Fettweis, G.; Krondorf, M.; Bittner, S. GFDM—Generalized Frequency Division Multiplexing. In Proceedings of the VTC Spring 2009—IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 26–29 April 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Ahmad, R.; Srivastava, A. Optical GFDM: An improved alternative candidate for indoor visible light communication. Photonic Netw. Commun. 2020, 39, 152–163. [Google Scholar] [CrossRef]
- Saengudomlert, P.; Buddhacharya, S. Unipolar GFDM with Dimming Support for Visible Light Communications. IEEE Trans. Wirel. Commun. 2023, 1. [Google Scholar] [CrossRef]
- Guiomar, F.P.; Bertignono, L.; Nespola, A.; Carena, A. Frequency-Domain Hybrid Modulation Formats for High Bit-Rate Flexibility and Nonlinear Robustness. J. Lightwave Technol. 2018, 36, 4856–4870. [Google Scholar] [CrossRef]
- Guiomar, F.P.; Carena, A.; Bosco, G.; Bertignono, L.; Nespola, A.; Poggiolini, P. Nonlinear mitigation on subcarrier-multiplexed PM-16QAM optical systems. Opt. Express 2017, 25, 4298–4311. [Google Scholar] [CrossRef]
- Qiu, M.; Zhuge, Q.; Chagnon, M.; Gao, Y.; Xu, X.; Morsy-Osman, M.; Plant, D.V. Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems. Opt. Express 2014, 22, 18770–18777. [Google Scholar] [CrossRef]
- Loureiro, P.A.; Silva, V.N.H.; Medeiros, M.C.R.; Guiomar, F.P.; Monteiro, P.P. Entropy loading for capacity maximization of RGB-based visible light communications. Opt. Express 2022, 30, 36025–36037. [Google Scholar] [CrossRef]
- Marshoud, H.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K. Multi-user techniques in visible light communications: A survey. In Proceedings of the 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS), Marrakesh, Morocco, 17–19 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Nuwanpriya, A.; Ho, S.W.; Chen, C.S. Indoor MIMO Visible Light Communications: Novel Angle Diversity Receivers for Mobile Users. IEEE J. Sel. Areas Commun. 2015, 33, 1780–1792. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D.; Yang, H.; Zhang, S.; Du, P. Reduction of SINR Fluctuation in Indoor Multi-Cell VLC Systems Using Optimized Angle Diversity Receiver. J. Lightwave Technol. 2018, 36, 3603–3610. [Google Scholar] [CrossRef]
- Aljohani, M.K.; Aletri, O.Z.; Alazwary, K.D.; Musa, M.O.I.; El-Gorashi, T.E.H.; Alresheedi, M.T.; Elmirghani, J.M.H. NOMA Visible Light Communication System with Angle Diversity Receivers. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Dixit, V.; Kumar, A. Performance analysis of angular diversity receiver based MIMO–VLC system for imperfect CSI. J. Opt. 2021, 23, 085701. [Google Scholar] [CrossRef]
- Fath, T.; Haas, H. Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments. IEEE Trans. Commun. 2013, 61, 733–742. [Google Scholar] [CrossRef]
- Safari, M.; Uysal, M. Do We Really Need OSTBCs for Free-Space Optical Communication with Direct Detection? IEEE Trans. Wirel. Commun. 2008, 7, 4445–4448. [Google Scholar] [CrossRef]
- Siddiqi, U.F.; Narmanlioglu, O.; Uysal, M.; Sait, S.M. Joint bit and power loading for adaptive MIMO OFDM VLC systems. Trans. Emerg. Telecommun. Technol. 2020, 31, e3850. [Google Scholar] [CrossRef]
- Guo, X.; Yuan, Y.; Pan, C.; Xiao, J. Interleaved superposed-64QAM-constellation design for spatial multiplexing visible light communication systems. Opt. Express 2021, 29, 23341–23356. [Google Scholar] [CrossRef] [PubMed]
- Mardanikorani, S.; Deng, X.; Linnartz, J.P.M.G. Sub-Carrier Loading Strategies for DCO-OFDM LED Communication. IEEE Trans. Commun. 2020, 68, 1101–1117. [Google Scholar] [CrossRef]
- Brusin, A.M.R.; Guiomar, F.P.; Lorences-Riesgo, A.; Monteiro, P.P.; Carena, A. Enhanced resilience towards ROADM-induced optical filtering using subcarrier multiplexing and optimized bit and power loading. Opt. Express 2019, 27, 30710–30725. [Google Scholar] [CrossRef]
- Che, D.; Shieh, W. Approaching the Capacity of Colored-SNR Optical Channels by Multicarrier Entropy Loading. J. Lightwave Technol. 2018, 36, 68–78. [Google Scholar] [CrossRef]
- Chow, P.; Cioffi, J.; Bingham, J. A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels. IEEE Trans. Commun. 1995, 43, 773–775. [Google Scholar] [CrossRef]
- Levin, H. A complete and optimal data allocation method for practical discrete multitone systems. In Proceedings of the GLOBECOM’01, IEEE Global Telecommunications Conference (Cat. No.01CH37270), San Antonio, TX, USA, 25–29 November 2001; Volume 1, pp. 369–374. [Google Scholar] [CrossRef]
- Campello, J. Practical bit loading for DMT. In Proceedings of the 1999 IEEE International Conference on Communications (Cat. No. 99CH36311), Vancouver, BC, Canada, 6–10 June 1999; Volume 2, pp. 801–805. [Google Scholar] [CrossRef]
- Fehenberger, T.; Alvarado, A.; Böcherer, G.; Hanik, N. On Probabilistic Shaping of Quadrature Amplitude Modulation for the Nonlinear Fiber Channel. J. Lightwave Technol. 2016, 34, 5063–5073. [Google Scholar] [CrossRef]
- Cho, J.; Winzer, P.J. Probabilistic Constellation Shaping for Optical Fiber Communications. J. Lightwave Technol. 2019, 37, 1590–1607. [Google Scholar] [CrossRef]
- Guiomar, F.P.; Lorences-Riesgo, A.; Ranzal, D.; Rocco, F.; Sousa, A.N.; Fernandes, M.A.; Brandão, B.T.; Carena, A.; Teixeira, A.L.; Medeiros, M.C.R.; et al. Adaptive Probabilistic Shaped Modulation for High-Capacity Free-Space Optical Links. J. Lightwave Technol. 2020, 38, 6529–6541. [Google Scholar] [CrossRef]
- Che, D.; Shieh, W. Squeezing out the last few bits from band-limited channels with entropy loading. Opt. Express 2019, 27, 9321–9329. [Google Scholar] [CrossRef] [PubMed]
- Schulte, P.; Böcherer, G. Constant Composition Distribution Matching. IEEE Trans. Inf. Theory 2016, 62, 430–434. [Google Scholar] [CrossRef]
- Xie, C.; Chen, Z.; Fu, S.; Liu, W.; He, Z.; Deng, L.; Tang, M.; Liu, D. Achievable information rate enhancement of visible light communication using probabilistically shaped OFDM modulation. Opt. Express 2018, 26, 367–375. [Google Scholar] [CrossRef]
- Che, D.; Shieh, W. Entropy-loading: Multi-carrier constellation-shaping for colored-SNR optical channels. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
- Qu, Z.; Djordjevic, I.B. On the Probabilistic Shaping and Geometric Shaping in Optical Communication Systems. IEEE Access 2019, 7, 21454–21464. [Google Scholar] [CrossRef]
- Karanov, B.; Chagnon, M.; Thouin, F.; Eriksson, T.A.; Bülow, H.; Lavery, D.; Bayvel, P.; Schmalen, L. End-to-End Deep Learning of Optical Fiber Communications. J. Lightwave Technol. 2018, 36, 4843–4855. [Google Scholar] [CrossRef]
- Chen, B.; Okonkwo, C.; Hafermann, H.; Alvarado, A. Increasing Achievable Information Rates via Geometric Shaping. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Mirani, A.; Agrell, E.; Karlsson, M. Low-Complexity Geometric Shaping. J. Lightwave Technol. 2021, 39, 363–371. [Google Scholar] [CrossRef]
- Oliveira, B.M.; Neves, M.S.; Guiomar, F.P.; Medeiros, M.C.R.; Monteiro, P.P. End-to-end deep learning of geometric shaping for unamplified coherent systems. Opt. Express 2022, 30, 41459–41472. [Google Scholar] [CrossRef]
- Wu, X.; Chi, N. The phase estimation of geometric shaping 8-QAM modulations based on K-means clustering in underwater visible light communication. Opt. Commun. 2019, 444, 147–153. [Google Scholar] [CrossRef]
- Wei, Y.; Yao, L.; Zhang, H.; Shen, C.; Chi, N.; Shi, J. An Optimal Adaptive Constellation Design Utilizing an Autoencoder-Based Geometric Shaping Model Framework. Photonics 2023, 10, 809. [Google Scholar] [CrossRef]
- Borogovac, T.; Rahaim, M.B.; Tuganbayeva, M.; Little, T.D.C. “Lights-off” visible light communications. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 797–801. [Google Scholar] [CrossRef]
- Tian, Z.; Wright, K.; Zhou, X. The Darklight Rises: Visible Light Communication in the Dark: Demo. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, MobiCom ’16, New York, NY, USA, 3–7 October 2016; pp. 495–496. [Google Scholar] [CrossRef]
- Beguni, C.; Căilean, A.M.; Avătămăniței, S.A.; Dimian, M. Analysis and Experimental Investigation of the Light Dimming Effect on Automotive Visible Light Communications Performances. Sensors 2021, 21, 4446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loureiro, P.A.; Guiomar, F.P.; Monteiro, P.P. Visible Light Communications: A Survey on Recent High-Capacity Demonstrations and Digital Modulation Techniques. Photonics 2023, 10, 993. https://doi.org/10.3390/photonics10090993
Loureiro PA, Guiomar FP, Monteiro PP. Visible Light Communications: A Survey on Recent High-Capacity Demonstrations and Digital Modulation Techniques. Photonics. 2023; 10(9):993. https://doi.org/10.3390/photonics10090993
Chicago/Turabian StyleLoureiro, Pedro A., Fernando P. Guiomar, and Paulo P. Monteiro. 2023. "Visible Light Communications: A Survey on Recent High-Capacity Demonstrations and Digital Modulation Techniques" Photonics 10, no. 9: 993. https://doi.org/10.3390/photonics10090993
APA StyleLoureiro, P. A., Guiomar, F. P., & Monteiro, P. P. (2023). Visible Light Communications: A Survey on Recent High-Capacity Demonstrations and Digital Modulation Techniques. Photonics, 10(9), 993. https://doi.org/10.3390/photonics10090993