Advances in Visible Light Communication
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Alqahtani, A.H.; Almohimmah, E.M.; Alresheedi, M.T.; Abas, A.F.; Qidan, A.A.; Elmirghani, J. Decoding-Order-Based Power Allocation (DOPA) Scheme for Non-Orthogonal Multiple Access (NOMA) Visible Light Communication Systems. Photonics 2022, 9, 718. https://doi.org/10.3390/photonics9100718.
- Li, B.; Shi, J.; Feng, S. Reconstructed Hybrid Optical OFDM-NOMA for Multiuser VLC Systems. Photonics 2022, 9, 857. https://doi.org/10.3390/photonics9110857
- Zhong, X.; Chen, C.; Fu, S.; Zeng, Z.; Liu, M. DeepGOMIMO: Deep Learning-Aided Generalized Optical MIMO with CSI-Free Detection. Photonics 2022, 9, 940. https://doi.org/10.3390/photonics9120940.
- Wu, Q.; Zhang, J.; Zhang, Y.; Xin, G.; Guo, D. Asymptotic Capacity Maximization for MISO Visible Light Communication Systems with a Liquid Crystal RIS-Based Receiver. Photonics 2023, 10, 128. https://doi.org/10.3390/photonics10020128.
- Saied, O.; Kaiwartya, O.; Aljaidi, M.; Kumar, S.; Mahmud, M.; Kharel, R.; Al-Sallami, F.; Tsimenidis, C.C. LiNEV: Visible Light Networking for Connected Vehicles. Photonics 2023, 10, 925. https://doi.org/10.3390/photonics10080925.
- Matthews, W.; Collins, S. An Experimental and Numerical Study of the Impact of Ambient Light of SiPMs in VLC Receivers. Photonics 2022, 9, 888. https://doi.org/10.3390/photonics9120888.
- Zhang, L.; Jiang, R.; Tang, X.; Chen, Z.; Li, Z.; Chen, J. Performance Estimation and Selection Guideline of SiPM Chip within SiPM-Based OFDM-OWC System. Photonics 2022, 9, 637. https://doi.org/10.3390/photonics9090637.
- Yang, H.; Yan, Q.; Wang, M.; Wang, Y.; Li, P.; Wang, W. Synchronous clock recovery of photon-counting underwater optical wireless communication based on deep learning. Photonics 2022, 9, 884. https://doi.org/10.3390/photonics9110884.
- Yang, C.; Wen, S.; Yuan, D.; Chen, J.; Huang, J.; Guan, W. CGA-VLP: High accuracy visible light positioning algorithm using single square LED with geomagnetic angle correction. Photonics 2022, 9, 653. https://doi.org/10.3390/photonics9090653.
- Yang, W.; Qin, L.; Hu, X.; Zhao, D. Indoor Visible-Light 3D Positioning System Based on GRU Neural Network. Photonics 2023, 10, 633. https://doi.org/10.3390/photonics10060633.
- Deng, B.; Wang, F.; Qin, L.; Hu, X. A Visible Light 3D Positioning System for Underground Mines Based on Convolutional Neural Network Combining Inception Module and Attention Mechanism. Photonics 2023, 10, 918. https://doi.org/10.3390/photonics10080918.
- Menéndez, J.M.; Steendam, H. On the optimisation of illumination LEDs for VLP systems. Photonics 2022, 9, 750. https://doi.org/10.3390/photonics9100750.
- Yan, X.; Wang, Y.; Li, C.; Li, F.; Cao, Z.; Tangdiongga, E. Two-Stage Link Loss Optimization of Divergent Gaussian Beams for Narrow Field-of-View Receivers in Line-of-Sight Indoor Downlink Optical Wireless Communication. Photonics 2023, 10, 815. https://doi.org/10.3390/photonics10070815.
- Li, J.; Pan, C.; Pan, J.; Lin, J.; Lu, M.; Jiang, Z.L.; Fang, J. Long-Distance, Real-Time LED Display-Camera Communication System Based on LED Point Clustering and Lightweight Image Processing. Photonics 2022, 9, 721. https://doi.org/10.3390/photonics9100721.
- Shi, J.; Niu, W.; Ha, Y.; Xu, Z.; Li, Z.; Yu, S.; Chi, N. AI-enabled intelligent visible light communications: Challenges, progress, and future. Photonics 2022, 9, 529. https://doi.org/10.3390/photonics9080529.
- Geng, Z.; Khan, F.N.; Guan, X.; Dong, Y. Advances in visible light communication technologies and applications. Photonics 2022, 9, 893. https://doi.org/10.3390/photonics9120893.
- Loureiro, P.A.; Guiomar, F.P.; Monteiro, P.P. Visible Light Communications: A Survey on Recent High-Capacity Demonstrations and Digital Modulation Techniques. Photonics 2023, 10, 993. https://doi.org/10.3390/photonics10090993
- Liu, X.; Hu, J.; Bian, Q.; Yi, S.; Ma, Y.; Shi, J.; Li, Z.; Zhang, J.; Chi, N.; Shen, C. Recent Advances in Optical Injection Locking for Visible Light Communication Applications. Photonics 2023, 10, 291. https://doi.org/10.3390/photonics10030291.
- He, C.; Chen, C. A Review of Advanced Transceiver Technologies in Visible Light Communications. Photonics 2023, 10, 648. https://doi.org/10.3390/photonics10060648.
- Fang, C.; Li, S.; Wang, Y.; Wang, K. High-Speed Underwater Optical Wireless Communication with Advanced Signal Processing Methods Survey. Photonics 2023, 10, 811. https://doi.org/10.3390/photonics10070811.
- Huang, R.; Yamazato, T. A Review on Image Sensor Communication and Its Applications to Vehicles. Photonics 2023, 10, 617. https://doi.org/10.3390/photonics10060617.
References
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is lifi? J. Light. Technol. 2015, 34, 1533–1544. [Google Scholar] [CrossRef]
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Ferreira, R.X.; Xie, E.; McKendry, J.J.; Rajbhandari, S.; Chun, H.; Faulkner, G.; Watson, S.; Kelly, A.E.; Gu, E.; Penty, R.V.; et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol. Lett. 2016, 28, 2023–2026. [Google Scholar] [CrossRef]
- Guo, Y.; Alkhazragi, O.; Kang, C.H.; Shen, C.; Mao, Y.; Sun, X.; Ng, T.K.; Ooi, B.S. A tutorial on laser-based lighting and visible light communications: Device and technology. Chin. Opt. Lett. 2019, 17, 040601. [Google Scholar]
- O’Brien, D.; Rajbhandari, S.; Chun, H. Transmitter and receiver technologies for optical wireless. Philos. Trans. R. Soc. A 2020, 378, 20190182. [Google Scholar] [CrossRef] [PubMed]
- Elgala, H.; Mesleh, R.; Haas, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Huang, W.; Xu, Z. Visible Light Communications: Modulation and Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Shi, J.; Niu, W.; Ha, Y.; Xu, Z.; Li, Z.; Yu, S.; Chi, N. AI-enabled intelligent visible light communications: Challenges, progress, and future. Photonics 2022, 9, 529. [Google Scholar] [CrossRef]
- Sun, X.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K.; Ooi, B.S. A review on practical considerations and solutions in underwater wireless optical communication. J. Light. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef]
- Yamazato, T.; Takai, I.; Okada, H.; Fujii, T.; Yendo, T.; Arai, S.; Andoh, M.; Harada, T.; Yasutomi, K.; Kagawa, K.; et al. Image-sensor-based visible light communication for automotive applications. IEEE Commun. Mag. 2014, 52, 88–97. [Google Scholar] [CrossRef]
- Armstrong, J.; Sekercioglu, Y.A.; Neild, A. Visible light positioning: A roadmap for international standardization. IEEE Commun. Mag. 2013, 51, 68–73. [Google Scholar] [CrossRef]
- Sadat, H.; Abaza, M.; Mansour, A.; Alfalou, A. A survey of NOMA for VLC systems: Research challenges and future trends. Sensors 2022, 22, 1395. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, T.Q.; Armstrong, J. Performance of optical receivers using photodetectors with different fields of view in a MIMO ACO-OFDM system. J. Light. Technol. 2015, 33, 4957–4967. [Google Scholar] [CrossRef]
- Matthews, W.; Collins, S. A Roadmap for Gigabit to Terabit Optical Wireless Communications Receivers. Sensors 2023, 23, 1101. [Google Scholar] [CrossRef] [PubMed]
- Do, T.H.; Yoo, M. An in-depth survey of visible light communication based positioning systems. Sensors 2016, 16, 678. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Ali, W. Advances in Visible Light Communication. Photonics 2023, 10, 1277. https://doi.org/10.3390/photonics10111277
He C, Ali W. Advances in Visible Light Communication. Photonics. 2023; 10(11):1277. https://doi.org/10.3390/photonics10111277
Chicago/Turabian StyleHe, Cuiwei, and Wajahat Ali. 2023. "Advances in Visible Light Communication" Photonics 10, no. 11: 1277. https://doi.org/10.3390/photonics10111277
APA StyleHe, C., & Ali, W. (2023). Advances in Visible Light Communication. Photonics, 10(11), 1277. https://doi.org/10.3390/photonics10111277