Temporal Dynamics of an Asymmetrical Dielectric Nanodimer Wrapped with Graphene
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horowitz, P. The Art of Electronics, 3rd ed.; Cambridge University Press: New York, NY, USA, 2015; ISBN 978-0-521-80926-9. [Google Scholar]
- Kılıç, R. A Practical Guide for Studying Chua’s Circuits; World Scientific Series on Nonlinear Science Series A; World Scientific Publishing Company: Singapore, 2010; Volume 71, ISBN 978-981-4291-13-2. [Google Scholar]
- Yang, Y.; Wang, D.; Tan, Z.J.; Xiong, X.; Wang, M.; Peng, R.; Fang, N.X. Ultrathin Platelet Antennas Mediated Light-Matter Interaction in Monolayer MoS2. Opt. Express 2017, 25, 10261–10269. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, D.; Chen, T.-Y.; Huang, C.-B. Polarization-Enabled Steering of Surface Plasmons Using Crossed Reciprocal Nanoantennas. Laser Photonics Rev. 2020, 14, 2000076. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, L.; Rahmani, M.; Giannini, V.; Miroshnichenko, A.E.; Hong, M.; Li, X.; Maier, S.A.; Lei, D. Synthetic Plasmonic Nanocircuits and the Evolution of Their Correlated Spatial Arrangement and Resonance Spectrum. ACS Photonics 2021, 8, 166–174. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Valero, A.C.; Tarkhov, M.; Bobrovs, V.; Redka, D.; Shalin, A.S. Transparent Hybrid Anapole Metasurfaces with Negligible Electromagnetic Coupling for Phase Engineering. Nanophotonics 2021, 10, 4385–4398. [Google Scholar] [CrossRef]
- Canós Valero, A.; Gurvitz, E.A.; Benimetskiy, F.A.; Pidgayko, D.A.; Samusev, A.; Evlyukhin, A.B.; Bobrovs, V.; Redka, D.; Tribelsky, M.I.; Rahmani, M.; et al. Theory, Observation, and Ultrafast Response of the Hybrid Anapole Regime in Light Scattering. Laser Photonics Rev. 2021, 15, 2100114. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, S.; Wang, K.; Xing, X.; Wee, A.; Loh, K.P.; Wang, B.; Wu, D.; Chu, J.; Alu, A.; et al. Chirality-Dependent Unidirectional Routing of WS2 Valley Photons in a Nanocircuit. Nat. Nanotechnol. 2022, 17, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.V.; Canós Valero, A.; Shamkhi, H.K.; Terekhov, P.; Ni, X.; Bobrovs, V.; Rybin, M.V.; Shalin, A.S. Special Scattering Regimes for Conical All-Dielectric Nanoparticles. Sci. Rep. 2022, 12, 21904. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Huang, Y.; Ma, P.; Shalin, A.S.; Gao, L. The Temporal Dynamics of Nonlocal Plasmonic Nanoparticle under the Ultrashort Pulses. Results Phys. 2023, 48, 106437. [Google Scholar] [CrossRef]
- Xiong, X.; Zeng, Z.-Y.; Peng, R.; Wang, M. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna. Chin. Phys. Lett. 2023, 40, 017801. [Google Scholar] [CrossRef]
- Wu, P.-Y.; Chang, Y.-C.; Huang, C.-B. Broadband Plasmonic Half-Subtractor and Digital Demultiplexer in Pure Parallel Connections. Nanophotonics 2022, 11, 3623–3629. [Google Scholar] [CrossRef]
- Xie, J.; Niu, X.; Hu, X.; Wang, F.; Chai, Z.; Yang, H.; Gong, Q. Ultracompact All-Optical Full-Adder and Half-Adder Based on Nonlinear Plasmonic Nanocavities. Nanophotonics 2017, 6, 1161–1173. [Google Scholar] [CrossRef]
- Li, Y.; An, N.; Lu, Z.; Wang, Y.; Chang, B.; Tan, T.; Guo, X.; Xu, X.; He, J.; Xia, H.; et al. Nonlinear Co-Generation of Graphene Plasmons for Optoelectronic Logic Operations. Nat. Commun. 2022, 13, 3138. [Google Scholar] [CrossRef]
- Zharov, A.A.; Noskov, R.E.; Tsarev, M.V. Plasmon-Induced Terahertz Radiation Generation Due to Symmetry Breaking in a Nonlinear Metallic Nanodimer. J. Appl. Phys. 2009, 106, 073104. [Google Scholar] [CrossRef]
- Lapshina, N.S.; Noskov, R.E.; Kivshar, Y.S. Nonlinear Nanoantenna with Self-Tunable Scattering Pattern. JETP Lett. 2013, 96, 759–764. [Google Scholar] [CrossRef]
- Yu, W.; Ma, P.; Sun, H.; Gao, L.; Noskov, R.E. Optical Tristability and Ultrafast Fano Switching in Nonlinear Magnetoplasmonic Nanoparticles. Phys. Rev. B 2018, 97, 075436. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Gao, L.; Ginzburg, P.; Noskov, R.E. Nonlinear Nanophotonic Circuitry: Tristable and Astable Multivibrators and Chaos Generator. Laser Photonics Rev. 2020, 14, 1900304. [Google Scholar] [CrossRef]
- Ziani, Z.; Lévêque, G.; Coulibaly, S.; Taki, A.; Akjouj, A. Investigating Route to Chaos in Nonlinear Plasmonic Dimer. Ann. Phys. 2020, 532, 2000240. [Google Scholar] [CrossRef]
- Noskov, R.E.; Belov, P.A.; Kivshar, Y.S. Subwavelength Modulational Instability and Plasmon Oscillons in Nanoparticle Arrays. Phys. Rev. Lett. 2012, 108, 093901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noskov, R.; Belov, P.; Kivshar, Y. Oscillons, Solitons, and Domain Walls in Arrays of Nonlinear Plasmonic Nanoparticles. Sci. Rep. 2012, 2, 873. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, D.A.; Noskov, R.E.; Smirnov, L.A.; Kivshar, Y.S. Dissipative Plasmon Solitons in Graphene Nanodisk Arrays. Phys. Rev. B 2015, 91, 075409. [Google Scholar] [CrossRef] [Green Version]
- Savelev, R.S.; Yulin, A.V.; Krasnok, A.E.; Kivshar, Y.S. Solitary Waves in Chains of High-Index Dielectric Nanoparticles. ACS Photonics 2016, 3, 1869–1876. [Google Scholar] [CrossRef]
- Noskov, R.E.; Smirnova, D.A.; Kivshar, Y.S. Subwavelength Solitons and Faraday Waves in Two-Dimensional Lattices of Metal Nanoparticles. Opt. Lett. 2013, 38, 2554–2556. [Google Scholar] [CrossRef]
- Ziani, Z.; Lévêque, G.; Akjouj, A.; Coulibaly, S.; Taki, A. Characterization of Spatiotemporal Chaos in Arrays of Nonlinear Plasmonic Nanoparticles. Phys. Rev. B 2019, 100, 165423. [Google Scholar] [CrossRef]
- Halas, N.J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef] [PubMed]
- Zohar, N.; Chuntonov, L.; Haran, G. The Simplest Plasmonic Molecules: Metal Nanoparticle Dimers and Trimers. J. Photochem. Photobiol. C Photochem. Rev. 2014, 21, 26–39. [Google Scholar] [CrossRef]
- Grigorenko, A.N.; Roberts, N.W.; Dickinson, M.R.; Zhang, Y. Nanometric Optical Tweezers Based on Nanostructured Substrates. Nat. Photon. 2008, 2, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Sukhov, S.; Shalin, A.; Haefner, D.; Dogariu, A. Actio et Reactio in Optical Binding. Opt. Express OE 2015, 23, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Kostina, N.A.; Kislov, D.A.; Ivinskaya, A.N.; Proskurin, A.; Redka, D.N.; Novitsky, A.; Ginzburg, P.; Shalin, A.S. Nanoscale Tunable Optical Binding Mediated by Hyperbolic Metamaterials. ACS Photonics 2020, 7, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Large, N.; Abb, M.; Aizpurua, J.; Muskens, O.L. Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches. Nano Lett. 2010, 10, 1741–1746. [Google Scholar] [CrossRef] [Green Version]
- El Barghouti, M.; Akjouj, A.; Mir, A. Design of Silver Nanoparticles with Graphene Coatings Layers Used for LSPR Biosensor Applications. Vacuum 2020, 180, 109497. [Google Scholar] [CrossRef]
- Shegai, T.; Chen, S.; Miljković, V.D.; Zengin, G.; Johansson, P.; Käll, M. A Bimetallic Nanoantenna for Directional Colour Routing. Nat. Commun. 2011, 2, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Ma, P.; Wu, Y.M. Abnormal Fano Profile in Graphene-Wrapped Dielectric Particle Dimer. Photonics 2020, 7, 124. [Google Scholar] [CrossRef]
- Ma, P.; Gao, L.; Ginzburg, P.; Noskov, R.E. Ultrafast Cryptography with Indefinitely Switchable Optical Nanoantennas. Light Sci. Appl. 2018, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Ávalos-Ovando, O.; Besteiro, L.V.; Wang, Z.; Govorov, A.O. Temporal Plasmonics: Fano and Rabi Regimes in the Time Domain in Metal Nanostructures. Nanophotonics 2020, 9, 3587–3595. [Google Scholar] [CrossRef]
- Yelo-Sarrión, J.; Leo, F.; Gorza, S.-P.; Parra-Rivas, P. Neuronlike Spiking Dynamics in Asymmetrically Driven Dissipative Nonlinear Photonic Dimers. Phys. Rev. A 2022, 106, 013512. [Google Scholar] [CrossRef]
- Dana, B.D.; Koya, A.N.; Song, X.; Lin, J. Ultrafast Plasmon Dynamics in Asymmetric Gold Nanodimers. Chin. Phys. B 2022, 31, 064208. [Google Scholar] [CrossRef]
- Yelo-Sarrión, J.; Leo, F.; Gorza, S.-P.; Parra-Rivas, P. Self-Pulsing and Chaos in the Asymmetrically Driven Dissipative Photonic Bose–Hubbard Dimer: A Bifurcation Analysis. Chaos 2022, 32, 083103. [Google Scholar] [CrossRef]
- Skokos, C. The lyapunov characteristic exponents and their computation. In Dynamics of Small Solar System Bodies and Exoplanets; Souchay, J.J., Dvorak, R., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 790, pp. 63–135. ISBN 978-3-642-04457-1. [Google Scholar]
- Ramasubramanian, K.; Sriram, M.S. A Comparative Study of Computation of Lyapunov Spectra with Different Algorithms. Phys. D Nonlinear Phenom. 2000, 139, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Naseri, T.; Daneshfar, N.; Moradi-Dangi, M.; Eynipour-Malaee, F. Terahertz Optical Bistability of Graphene-Coated Cylindrical Core–Shell Nanoparticles. J. Theor. Appl. Phys. 2018, 12, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Christensen, T.; Yan, W.; Jauho, A.-P.; Wubs, M.; Mortensen, N.A. Kerr Nonlinearity and Plasmonic Bistability in Graphene Nanoribbons. Phys. Rev. B 2015, 92, 121407. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Miroshnichenko, A.E.; Gao, L. Low-Threshold Optical Bistability of Graphene-Wrapped Dielectric Composite. Sci. Rep. 2016, 6, 23354. [Google Scholar] [CrossRef] [Green Version]
- Mai, Z.; Lin, F.; Pang, W.; Xu, H.; Tan, S.; Fu, S.; Li, Y. Anderson Localization in Metallic Nanoparticle Arrays. Opt. Express OE 2016, 24, 13210–13219. [Google Scholar] [CrossRef] [Green Version]
- Bergman, D.J.; Levy, O.; Stroud, D. Theory of Optical Bistability in a Weakly Nonlinear Composite Medium. Phys. Rev. B 1994, 49, 129–134. [Google Scholar] [CrossRef]
- Gao, L. Optical Bistability in Composite Media with Nonlinear Coated Inclusions. Phys. Lett. A 2003, 318, 119–125. [Google Scholar] [CrossRef]
- Noskov, R.E.; Krasnok, A.E.; Kivshar, Y.S. Nonlinear Metal–Dielectric Nanoantennas for Light Switching and Routing. New J. Phys. 2012, 14, 093005. [Google Scholar] [CrossRef]
- Lapshina, N.; Noskov, R.; Kivshar, Y. Nanoradar Based on Nonlinear Dimer Nanoantenna. Opt. Lett. 2012, 37, 3921–3923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Gao, L.; Ma, P.; Jiang, X.; Fan, W.; Shalin, A.S. Nonlinear Chaotic Dynamics in Nonlocal Plasmonic Core-Shell Nanoparticle Dimer. Opt. Express 2023, 31, 19646–19656. [Google Scholar] [CrossRef]
- Li, H.H. Refractive Index of Alkaline Earth Halides and Its Wavelength and Temperature Derivatives. J. Phys. Chem. Ref. Data 1980, 9, 161–290. [Google Scholar] [CrossRef]
- Kaplan, J.L.; Yorke, J.A. Chaotic behavior of multidimensional difference equations. In Functional Differential Equations and Approximation of Fixed Points; Peitgen, H.-O., Walther, H.-O., Eds.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1979; Volume 730, pp. 204–227. ISBN 978-3-540-09518-7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Huang, Y.; Ma, P.; Shalin, A.S.; Gao, L. Temporal Dynamics of an Asymmetrical Dielectric Nanodimer Wrapped with Graphene. Photonics 2023, 10, 914. https://doi.org/10.3390/photonics10080914
Jiang X, Huang Y, Ma P, Shalin AS, Gao L. Temporal Dynamics of an Asymmetrical Dielectric Nanodimer Wrapped with Graphene. Photonics. 2023; 10(8):914. https://doi.org/10.3390/photonics10080914
Chicago/Turabian StyleJiang, Xinchen, Yang Huang, Pujuan Ma, Alexander S. Shalin, and Lei Gao. 2023. "Temporal Dynamics of an Asymmetrical Dielectric Nanodimer Wrapped with Graphene" Photonics 10, no. 8: 914. https://doi.org/10.3390/photonics10080914
APA StyleJiang, X., Huang, Y., Ma, P., Shalin, A. S., & Gao, L. (2023). Temporal Dynamics of an Asymmetrical Dielectric Nanodimer Wrapped with Graphene. Photonics, 10(8), 914. https://doi.org/10.3390/photonics10080914