Topological Charge of Propagation-Invariant Laser Beams
Abstract
:1. Introduction
2. Propagation-Invariant Vortex Fields with Multiple Phase Singularities
3. Topological Charge of the Hermite–Laguerre–Gaussian Beams
4. Topological Charge of a Two-Parametric Vortex Hermite Beam
5. Simple Optical Vortices
6. Propagation-Invariant Beams in the Laguerre-Gaussian Basis
7. Numerical Simulation
7.1. Simulation of the Hermite–Laguerre–Gaussian Beams
7.2. Simulation of Two-Parametric Vortex Hermite Beams
7.3. Simulation of Propagation-Invariant Beams in the Laguerre–Gaussian Basis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abramochkin, E.G.; Volostnikov, V.G. Generalized Gaussian beams. J. Opt. A Pure Appl. Opt. 2004, 6, S157–S161. [Google Scholar] [CrossRef]
- Abramochkin, E.; Razueva, E.; Volostnikov, V. General astigmatic transform of Hermite–Laguerre–Gaussian beams. J. Opt. Soc. Am. A 2010, 27, 2506–2513. [Google Scholar] [CrossRef]
- Deng, D.; Guo, Q.; Hu, W. Hermite–Laguerre–Gaussian beams in strongly nonlocal nonlinear media. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 225402. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Zhou, G.Q.; Wang, X.G. Nonparaxial propagation of Hermite–Laguerre–Gaussian beams in uniaxial crystal orthogonal to the optical axis. Chin. Phys. B 2013, 22, 064101. [Google Scholar] [CrossRef]
- Duan, K.; Lü, B. Propagation of Hermite–Laguerre–Gaussian beams through a paraxial optical ABCD system with rectangular hard-edged aperture. Opt. Commun. 2005, 250, 1–9. [Google Scholar] [CrossRef]
- Deng, D.; Guo, Q. Elegant Hermite–Laguerre–Gaussian beams. Opt. Lett. 2008, 33, 1225–1227. [Google Scholar] [CrossRef]
- Abramochkin, E.; Alieva, T. Closed-form expression for mutual intensity evolution of Hermite–Laguerre–Gaussian Schell-model beams. Opt. Lett. 2017, 42, 4032–4035. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yu, X.; Chen, Y.; Huang, M.; Dai, X.; Liu, D. Generation of Hermite-Laguerre-Gaussian beams based on space-variant Pancharatnam Berry phase. Proc. SPIE 2018, 10964, 109645R. [Google Scholar] [CrossRef]
- Abramochkin, E.; Volostnikov, V. Spiral-type beams: Optical and quantum aspects. Opt. Commun. 1996, 125, 302–323. [Google Scholar] [CrossRef]
- Abramochkin, E.G.; Volostnikov, V.G. Modern optics of Gaussian Beams; Fizmatlit: Moscow, Russia, 2010; ISBN 978-5-9221-1216-1. (In Russian) [Google Scholar]
- Kotlyar, V.V.; Kovalev, A.A. Orbital angular momentum of paraxial propagation-invariant laser beams. J. Opt. Soc. Am. A 2022, 39, 1061–1065. [Google Scholar] [CrossRef]
- Zannotti, A.; Denz, C.; Alonso, M.A.; Dennis, M.R. Shaping caustics into propagation-invariant light. Nat. Commun. 2020, 11, 3597. [Google Scholar] [CrossRef] [PubMed]
- Soskind, M.; Soskind, R.; Soskind, Y. Shaping propagation invariant laser beams. Opt. Eng. 2015, 54, 111309. [Google Scholar] [CrossRef]
- Hansen, A.; Schultz, J.T.; Bigelow, N.P. Singular atom optics with spinor Bose–Einstein condensates. Optica 2016, 3, 355–361. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Torres, J.P. Multiplexing twisted light. Nat. Photon. 2012, 6, 420–422. [Google Scholar] [CrossRef]
- Xie, Z.; Lei, T.; Li, F.; Qiu, H.; Zhang, Z.; Wang, H.; Min, C.; Du, L.; Li, Z.; Yuan, X. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 2018, 7, 18001. [Google Scholar] [CrossRef] [Green Version]
- Sit, A.; Bouchard, F.; Fickler, R.; Gagnon-Bischoff, J.; Larocque, H.; Heshami, K.; Elser, D.; Peuntinger, C.; Günthner, K.; Heim, B.; et al. High-dimensional intracity quantum cryptography with structured photons. Optica 2017, 4, 1006–1010. [Google Scholar] [CrossRef] [Green Version]
- Sit, A.; Fickler, R.; Alsaiari, F.; Bouchard, F.; Larocque, H.; Gregg, P.; Yan, L.; Boyd, R.W.; Ramachandran, S.; Karimi, E. Quantum cryptography with structured photons through a vortex fiber. Opt. Lett. 2018, 43, 4108–4111. [Google Scholar] [CrossRef]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light Sci. Appl. 2018, 7, 17146. [Google Scholar] [CrossRef] [Green Version]
- Mathis, A.; Courvoisier, F.; Froehly, L.; Furfaro, L.; Jacquot, M.; Lacourt, P.A.; Dudley, J.M. Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl. Phys. Lett. 2012, 101, 071110. [Google Scholar] [CrossRef] [Green Version]
- Courvoisier, F.; Stoian, R.; Couairon, A. Ultrafast laser micro-and nano-processing with nondiffracting and curved beams. Opt. Laser Technol. 2016, 80, 125–137. [Google Scholar] [CrossRef]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Willig, K.I.; Harke, B.; Medda, R.; Hell, S.W. STED microscopy with continuous wave beams. Nat. Methods 2007, 4, 915–918. [Google Scholar] [CrossRef]
- Fahrbach, F.O.; Simon, P.; Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photon. 2010, 4, 780–785. [Google Scholar] [CrossRef]
- Vettenburg, T.; Dalgarno, H.I.; Nylk, J.; Coll-Lladó, C.; Ferrier, D.E.; Čižmár, T.; Gunn-Moore, F.J.; Dholakia, K. Light-sheet microscopy using an Airy beam. Nat. Methods 2014, 11, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Dholakia, K.; Čižmár, T. Shaping the future of manipulation. Nat. Photon. 2011, 5, 335–342. [Google Scholar] [CrossRef]
- Woerdemann, M.; Alpmann, C.; Esseling, M.; Denz, C. Advanced optical trapping by complex beam shaping. Laser Photon. Rev. 2013, 7, 839–854. [Google Scholar] [CrossRef]
- Volyar, A.; Abramochkin, E.; Egorov, Y.; Bretsko, M.; Akimova, Y. Fine structure of perturbed Laguerre–Gaussian beams: Hermite–Gaussian mode spectra and topological charge. Appl. Opt. 2020, 59, 7680–7687. [Google Scholar] [CrossRef]
- Volyar, A.; Abramochkin, E.; Akimova, Y.; Bretsko, M. Super bursts of the orbital angular momentum in astigmatic-invariant structured LG beams. Opt. Lett. 2022, 47, 5537–5540. [Google Scholar] [CrossRef]
- Volyar, A.; Abramochkin, E.; Akimova, Y.; Bretsko, M. Control of the orbital angular momentum via radial numbers of structured Laguerre–Gaussian beams. Opt. Lett. 2022, 47, 2402–2405. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Vortex Hermite–Gaussian laser beams. Opt. Lett. 2015, 40, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 2004, 6, 259–268. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. Volume 2: Special Functions; Gordon and Breach: New York, NY, USA, 1986; ISBN 2-88124-097-6. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. Volume 1: Elementary Functions; Gordon and Breach: New York, NY, USA, 1986; ISBN 2-88124-097-6. [Google Scholar]
- Kotlyar, V.; Kovalev, A.; Kozlova, E.; Savelyeva, A.; Stafeev, S. Geometric Progression of Optical Vortices. Photonics 2022, 9, 407. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyar, V.V.; Kovalev, A.A.; Abramochkin, E.G. Topological Charge of Propagation-Invariant Laser Beams. Photonics 2023, 10, 915. https://doi.org/10.3390/photonics10080915
Kotlyar VV, Kovalev AA, Abramochkin EG. Topological Charge of Propagation-Invariant Laser Beams. Photonics. 2023; 10(8):915. https://doi.org/10.3390/photonics10080915
Chicago/Turabian StyleKotlyar, Victor V., Alexey A. Kovalev, and Eugeny G. Abramochkin. 2023. "Topological Charge of Propagation-Invariant Laser Beams" Photonics 10, no. 8: 915. https://doi.org/10.3390/photonics10080915
APA StyleKotlyar, V. V., Kovalev, A. A., & Abramochkin, E. G. (2023). Topological Charge of Propagation-Invariant Laser Beams. Photonics, 10(8), 915. https://doi.org/10.3390/photonics10080915