Highly Er/Yb-Co-Doped Photosensitive Core Fiber for the Development of Single-Frequency Telecom Lasers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Fiber Preform Preparation Details
2.2. Fiber Laser Ultrashort-Cavity Fabrication Technique
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balland, G.A.; Morey, W.W. Continuously tunable single-mode erbium fiber laser. Opt. Lett. 1992, 17, 420–422. [Google Scholar]
- Zyskind, J.L.; Mizrahi, V.; DiGiovanni, D.J.; Sulhoff, J.W. Short single frequency erbium-doped fibre laser. Electron. Lett. 1992, 28, 1385–1387. [Google Scholar] [CrossRef]
- Mizrahi, V.; DiGiovanni, D.J.; Atkins, R.M.; Grubb, S.G.; Park, Y.-K.; Delavaux, J.-M.P. Stable single-mode erbium fiber-grating laser for digital communication. J. Light. Technol. 1993, 11, 2021–2025. [Google Scholar] [CrossRef]
- Fu, S.; Shi, W.; Feng, Y.; Zhang, L.; Yang, Z.; Xu, S.; Zhu, X.; Norwood, R.A.; Peyghambarian, N. Review of recent progress on single-frequency fiber lasers. J. Opt. Soc. Am. B 2017, 34, A49–A62. [Google Scholar] [CrossRef]
- Yang, Z.; Li, C.; Xu, S.; Yang, C. Single-Frequency Fiber Lasers, 1st ed.; Springer: Singapore, 2019; pp. 55–83. [Google Scholar]
- Hofmann, P.; Voigtländer, C.; Nolte, S.; Peyghambarian, N.; Schülzgen, A. 550-mW output power from a narrow linewidth all-phosphate fiber laser. J. Light. Technol. 2013, 31, 756–760. [Google Scholar] [CrossRef]
- Loh, W.H.; Samson, B.N.; Dong, L.; Cowle, G.J.; Hsu, K. High performance single frequency fiber grating-based erbium: Ytterbium-codoped fiber lasers. J. Light. Technol. 1998, 16, 114–118. [Google Scholar] [CrossRef]
- Melkumov, M.A.; Laptev, A.Y.; Yashkov, M.V.; Vechkanov, N.N.; Guryanov, A.N.; Bufetov, I.A. Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer effciency in Er–Yb doped phosphosilicate fibers. Inorg. Mater. 2010, 46, 299–303. [Google Scholar] [CrossRef]
- Canning, J.; Sceats, M.G.; Inglis, H.G.; Hill, P. Transient and permanent gratings in phosphosilicate optical fibers produced by the flash condensation technique. Opt. Lett. 1995, 20, 2189–2191. [Google Scholar] [CrossRef] [PubMed]
- Rybaltovsky, A.A.; Sokolov, V.O.; Plotnichenko, V.G.; Lanin, A.V.; Semenov, S.L.; Gur’yanov, A.N.; Khopin, V.F.; Dianov, E.M. Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm. Quantum Electron. 2007, 37, 388–392. [Google Scholar] [CrossRef]
- Bazakutsa, A.P.; Rybaltovsky, A.A.; Butov, O.V. Effect of hydrogen loading and UV irradiation on the gain of Er3+-doped fibers. J. Opt. Soc. Am. B 2019, 36, 2579–2586. [Google Scholar] [CrossRef]
- Dong, L.; Loh, W.H.; Caplen, J.E.; Minelly, J.D.; Hsu, K.; Reekie, L. Efficient single-frequency fiber laser with novel photosensitive Er/Yb optical fiber. Opt. Lett. 1997, 22, 694–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Guan, B.-O.; Tam, H.-Y. Ultra-short distributed Bragg reflector fiber laser for sensing applications. Opt. Express 2009, 17, 10050–10055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybaltovsky, A.A.; Lipatov, D.S.; Lobanov, A.S.; Abramov, A.N.; Umnikov, A.A.; Bazakutsa, A.P.; Bobkov, K.K.; Butov, O.V.; Gur’yanov, A.N. Photosensitive Er/Yb co-doped phosphosilicate optical fibers for continuous-wave single-frequency fiber lasers applications. J. Opt. Soc. Am. B 2020, 37, 3077–3083. [Google Scholar] [CrossRef]
- Lipatov, D.S.; Lobanov, A.S.; Guryanov, A.N.; Umnikov, A.A.; Abramov, A.N.; Khudyakov, M.M.; Likhachev, M.E.; Morozov, O.G. Fabrication and characterization of Er/Yb co-doped fluorophosphosilicate glass core optical fibers. Fibers 2021, 9, 15. [Google Scholar] [CrossRef]
- Erdogan, T. Fiber grating spectra. J. Light. Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Reekie, L.; Cruz, J.L.; Payne, D.N. Grating formation in aphosphorus-doped germanosilicate fiber. In Proceedings of the Optical Fiber Communication (OFC), Atlanta, GA, USA, 25 February–1 March 1996. Technical digest, paper TuO2. [Google Scholar]
- Dianov, E.M.; Mashinsky, V.M. Germania-based core optical fibers. J. Light. Technol. 2005, 23, 3500–3508. [Google Scholar] [CrossRef]
- Barmenkov, Y.O.; Zalvidea, D.; Torres-Peiró, S.; Cruz, J.L.; Andrés, M.V. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Opt. Express 2006, 14, 6394–6399. [Google Scholar] [CrossRef]
- Lipatov, D.S.; Guryanov, A.N.; Lobanov, A.S.; Abramov, A.N.; Umnikov, A.A.; Rybaltovsky, A.A.; Butov, O.V. Continuous-waves hort-cavity laser based on the Er-Yb-codoped phosphorosilicate optical fiber. In Proceedings of the 19th International Conference Laser Optics (ICLO), St Petersburg, Russia, 2–6 November 2020. paper ThR1-p41. [Google Scholar]
- Bazakutsa, A.P.; Rybaltovsky, A.A.; Umnikov, A.A.; Butov, O.V. Photobleaching of UV-induced defects in Er/Al-doped glasses for fiber lasers. Opt. Mater. Express 2020, 10, 2669–2678. [Google Scholar] [CrossRef]
- Skvortsov, M.I.; Wolf, A.A.; Dostovalov, A.V.; Vlasov, A.A.; Akulov, V.A.; Babin, S.A. Distributed feedback fiber laser based on a fiber Bragg grating inscribed using the femtosecond point-by-point technique. Laser Phys. Lett. 2018, 15, 035103. [Google Scholar] [CrossRef]
- Smirnov, A.M.; Butov, O.V. Passive Q-switched generation of all-fiber heavily erbium-doped laser. Proc. SPIE 2021, 11775, 89–94. [Google Scholar]
- Skvortsov, M.I.; Proskurina, K.V.; Golikov, E.V.; Dostovalov, A.V.; Terentyev, V.S.; Egorova, O.N.; Semjonov, S.L.; Babin, S.A. Distributed Bragg reflector laser based on composite fiber heavily doped with erbium ions. Photonics 2023, 10, 679. [Google Scholar] [CrossRef]
- Sun, W.; Shi, J.; Yu, Y.; Feng, X. All-fiber 1.55 μm erbium-doped distributed-feedback laser with single-polarization, single-frequency output by femtosecond laser line-by-line direct-writing. OSA Contin. 2021, 4, 334–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipatov, D.; Egorova, O.; Rybaltovsky, A.; Abramov, A.; Lobanov, A.; Umnikov, A.; Yashkov, M.; Semjonov, S. Highly Er/Yb-Co-Doped Photosensitive Core Fiber for the Development of Single-Frequency Telecom Lasers. Photonics 2023, 10, 796. https://doi.org/10.3390/photonics10070796
Lipatov D, Egorova O, Rybaltovsky A, Abramov A, Lobanov A, Umnikov A, Yashkov M, Semjonov S. Highly Er/Yb-Co-Doped Photosensitive Core Fiber for the Development of Single-Frequency Telecom Lasers. Photonics. 2023; 10(7):796. https://doi.org/10.3390/photonics10070796
Chicago/Turabian StyleLipatov, Denis, Olga Egorova, Andrey Rybaltovsky, Alexey Abramov, Alexey Lobanov, Andrey Umnikov, Mikhail Yashkov, and Sergey Semjonov. 2023. "Highly Er/Yb-Co-Doped Photosensitive Core Fiber for the Development of Single-Frequency Telecom Lasers" Photonics 10, no. 7: 796. https://doi.org/10.3390/photonics10070796
APA StyleLipatov, D., Egorova, O., Rybaltovsky, A., Abramov, A., Lobanov, A., Umnikov, A., Yashkov, M., & Semjonov, S. (2023). Highly Er/Yb-Co-Doped Photosensitive Core Fiber for the Development of Single-Frequency Telecom Lasers. Photonics, 10(7), 796. https://doi.org/10.3390/photonics10070796