Flexible Terahertz Metamaterials Absorber based on VO2
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hillger, P.; Grzyb, J.; Jain, R.; Pfeiffer, U. Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans. Terahertz Sci. Technol. 2018, 9, 1–19. [Google Scholar] [CrossRef]
- Glück, A.; Rothbart, N.; Schmalz, K. Hübers, H. SiGe BiCMOS Heterodyne receiver frontend for remote sensing with small satellites. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 603–610. [Google Scholar] [CrossRef]
- Zhong, S. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2019, 14, 273–281. [Google Scholar] [CrossRef]
- Schalch, J.S.; Chi, Y.; He, Y.; Tang, Y.; Zhao, X.; Zhang, X.; Wen, Q.; Averittl, R.D. Broadband electrically tunable VO2-metamaterial terahertz switch with suppressed reflection. Microw. Opt. Technol. Lett. 2020, 62, 2782–2790. [Google Scholar] [CrossRef]
- Zhai, Z.H.; Zhu, H.F.; Shi, Q.; Chen, S.C.; Li, J.; Li, Z.R.; Schneider, H.; Zhu, L.G. Enhanced photo responses of an optically driven VO2-based terahertz wave modulator near percolation threshold. Appl. Phys. Lett. 2018, 113, 231104. [Google Scholar] [CrossRef]
- Ferraro, A.; Zografopoulos, D.C.; Caputo, R.; Beccherelli, R. Angle-resolved and polarization-dependent investigation of cross-shaped frequency-selective surface terahertz filters. Appl. Phys. Lett. 2017, 110, 141107. [Google Scholar] [CrossRef]
- Wu, C.; Fang, Y.; Luo, L.; Guo, K.; Guo, Z. A dynamically tunable and wide-angle terahertz absorber based on graphene-dielectric grating. Mod. Phys. Lett. B 2020, 34, 2050292. [Google Scholar] [CrossRef]
- Zubair, A.; Tsentalovich, D.E.; Young, C.C.; Heimbeck, M.S.; Everitt, H.O.; Pasquali, M.; Kono, J. Carbon nanotube fiber terahertz polarizer. Appl. Phys. Lett. 2016, 108, 141107. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, X.; Liu, J.; Ye, D.; Duan, Y.; Li, K.; Yin, Z.; Huang, Y. Flexible metamaterial electronics. Adv. Mater. 2022, 34, 2200070. [Google Scholar] [CrossRef]
- Hengbo, X. Design, simulation and measurement of a single-band high-transmittance all-dielectric metamaterial filter. Opt. Mater. 2022, 125, 112145. [Google Scholar] [CrossRef]
- Liu, S.; Yin, X.; Zhao, H. The tunable single-/narrow-band terahertz metamaterial absorber through photoconductivity. Results Phys. 2022, 39, 105741. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, H.; Zhang, L.; Zhao, Y.; Xie, W. Temperature insensitive ultra-broadband THz metamaterial absorber based on metal square ring resonators. Results Phys. 2021, 22, 103915. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Lin, S.; Wu, J.; Li, W.; Meng, F.; Yang, Y.; Huang, X.; Jia, B.; Kivshar, Y. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. Nano Lett. 2021, 21, 8917–8923. [Google Scholar] [CrossRef]
- Stewart, J.W.; Nebabu, T.; Mikkelsen, M.H. Control of Nanoscale Heat Generation with Lithography-Free Metasurface Absorbers. Nano Lett. 2022, 22, 5151–5157. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Q.; Guo, L.; Su, C.; Wang, M.; Xia, F.; Sun, J.; Li, K.; Feng, H.; Yun, M. Dual-controlled tunable dual-band and ultra-broadband coherent perfect absorber in the THz range. Opt. Express 2022, 30, 30832–30844. [Google Scholar] [CrossRef]
- Yao, G.; Ling, F.; Yue, J.; Luo, C.; Ji, J.; Yao, J. Dual-band tunable perfect metamaterial absorber in the THz range. Opt. Express 2016, 24, 1518–1527. [Google Scholar] [CrossRef]
- Meng, H.; Shang, X.; Xue, X.; Tang, K.; Xia, S.; Zhai, X.; Liu, Z.; Chen, J.; J, H.; Wang, L. Bidirectional and dynamically tunable THz absorber with Dirac semimetal. Opt. Express 2019, 27, 31062–31074. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, P.; Zhou, Z.; Chen, X.; Yi, Z.; Zhu, J.; Zhang, T.; Jile, H. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide. IEEE Access. 2020, 8, 85154–85161. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.H.; Li, L.; Fan, Y.X.; Tao, Z.Y. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Sci. Rep. 2019, 9, 5751. [Google Scholar] [CrossRef]
- Mou, N.; Tang, B.; Li, J.; Dong, H.; Zhang, L. Switchable ultra-broadband terahertz wave absorption with VO2-based metasurface. Sci. Rep. 2022, 12, 1–8. [Google Scholar] [CrossRef]
- Thompson, Z.J.; Stickel, A.; Jeong, Y.G.; Han, S.; Son, B.H.; Paul, M.J.; Lee, B.; Mousavian, A.; Seo, G.; Kim, H.T.; et al. Terahertz-triggered phase transition and hysteresis narrowing in a nanoantenna patterned vanadium dioxide film. Nano Lett. 2015, 15, 5893–5898. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.; Oda, S.; Kawano, Y. A flexible and wearable terahertz scanner. Nat. Photonics 2016, 10, 809–813. [Google Scholar] [CrossRef]
- Cai, T.; Zheng, B.; Lou, J.; Cai, T.; Zheng, B.; Lou, J.; Shen, L.; Yang, Y.; Tang, S.; Li, E.; et al. Experimental Realization of a Superdispersion-Enabled Ultrabroadband Terahertz Cloak. Adv. Mater. 2022, 34, 2205053. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Cui, Y.; Tentzeris, M.M. Tile-based massively scalable MIMO and phased arrays for 5G/B5G-enabled smart skins and reconfigurable intelligent surfaces. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lv, Z.; Mohan, M.P.; Cui, Z.; Liu, Z.; Jiang, Y.; Li, J.; Wang, C.; Pan, S.; Karim, M.F.; et al. Pangolin-Inspired Stretchable, Microwave-Invisible Metascale. Adv. Mater. 2021, 33, 2102131. [Google Scholar] [CrossRef]
- Bilal, O.R.; Costanza, V.; Israr, A.; Palermo, A.; Celli, P.; Lau, F.; Daraio, C. A Flexible Spiraling-Metasurface as a Versatile Haptic Interface. AMT 2020, 5, 2000181. [Google Scholar] [CrossRef]
- Xiao, D.; Chen, W.; Sun, L.; Zhu, M.; Ng, Z.K.; Teo, E.H.T.; Zhang, J.; Hu, F. A Flexible and Ultra-Wideband Terahertz Wave Absorber Based on Pyramid-Shaped Carbon Nanotube Array via Femtosecond-Laser Microprocessing and Two-Step Transfer Technique. Adv. Mater. Interfaces 2022, 9, 2102414. [Google Scholar] [CrossRef]
- Yu, X.; Gao, X.; Qiao, W.; Wen, L.; Yang, W. Broadband tunable polarization converter realized by graphene-based metamaterial. IEEE Photon. Technol. Lett. 2016, 28, 2399–2402. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W. Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber. Appl. Opt. 2015, 54, 2376–2382. [Google Scholar] [CrossRef]
- Yang, P.; Qin, J.; Xu, J.; Tian-Cheng, H. Ultrathin flexible transmission metamaterial absorber. Acta Phys. Sin. 2019, 68, 087802. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Huang, W.; Yin, S.; Zhang, W.; Wang, K.; Zhang, Y.; Han, J. Robust and broadband integrated terahertz coupler conducted with adiabatic following. New J. Phys. 2019, 21, 113004. [Google Scholar] [CrossRef]
- Huang, W.; Qu, X.; Yin, S.; Zubair, M.; Yuan, M.; Zhang, W.; Han, J. Quantum engineering enables broadband and robust terahertz surface plasmon-polaritons coupler. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–7. [Google Scholar] [CrossRef]
- Huang, W.; Qu, X.; Yin, S.; Zubair, M.; Guo, C.; Xiong, X.; Zhang, W. Long-distance adiabatic wireless energy transfer via multiple coils coupling. Results Phys. 2020, 19, 103478. [Google Scholar] [CrossRef]
- Niu, L.; Xu, Q.; Zhang, X.; Zhang, Z.; Li, S.; Chen, X.; Xu, Y.; Ma, J.; Kang, M.; Han, J.; et al. Coupling plasmonic system for efficient wavefront control. ACS Appl. Mater. Interfaces 2021, 13, 5844–5852. [Google Scholar] [CrossRef]
- Liu, H.; Lu, J.; Wang, X.R. Metamaterials based on the phase transition of VO2. Nanotechnology 2017, 29, 024002. [Google Scholar] [CrossRef]
- Ahadi, S.; Neshat, M.; Moravvej-Farshi, M.K. Binary THz modulator based on silicon Schottky-metasurface. Sci. Rep. 2022, 12, 18871. [Google Scholar] [CrossRef]
- Gong, D.; Mei, J.; Li, N.; Shi, Y. Tunable metamaterial absorber based on VO2-graphene. Mater. Res. Express 2022, 9, 115803. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G.; Wang, Y.; Liu, J. Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure. Appl. Sci. 2022, 13, 252. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Qu, X. A novel miniaturized tri-band metamaterial THz absorber with angular and polarization stability. Optik 2021, 228, 166086. [Google Scholar] [CrossRef]
- Zhou, R.; Jiang, T.; Peng, Z.; Li, Z.; Zhang, M.; Wang, S.; Li, L.; Liang, H.; Ruan, S.; Su, H. Tunable broadband terahertz absorber based on graphene metamaterials and VO2. Opt. Mater. 2021, 114, 110915. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, Y.; Liu, C.; Zhang, T.; Zhang, B.; Wang, L.; Deng, X.; Wang, X.; Yu, Y. A tunable terahertz metamaterial absorber composed of hourglass-shaped graphene arrays. Nanomaterials 2020, 10, 533. [Google Scholar] [CrossRef] [PubMed]
Ref. | Material | Frequency (THz) | Absorption | Layer | Thickness (μm) | Flexible |
---|---|---|---|---|---|---|
[19] | polyimide, copper | 0.72, 1.4, 2.3 | 89%, 98%, 85% | three-layer | 16.2 | yes |
[29] | VO2 | 1.96 | Nearly 100% | three-layer | 26 | no |
[38] | VO2, graphene | 0.75–1.15; 2.5–4.5 | 94%, 90% | five-layer | 49.6 | no |
[39] | VO2 | 93.01–7.27 | 90% | three-layer | 7.4 | no |
[40] | Silicon, polyimide, copper | 0.33, 0.62, 0.82 | 98%, 96%, 98% | four-layer | 69 | no |
[41] | VO2, graphene | 1.2 | 99.3% | three-layer | 30.7 | no |
[42] | Si, SiO2, Au, graphene | - | 41.7% | three-layer | 0.94 | no |
Our paper | VO2, mica, gold | 0.24, 0.46 | 99.7%, 99.3% | three-layer | 42.3 | yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Leng, J.; Li, J.; Li, J.; Li, B.; Yang, M.; Wang, X.; Shi, Q. Flexible Terahertz Metamaterials Absorber based on VO2. Photonics 2023, 10, 621. https://doi.org/10.3390/photonics10060621
Jiang Z, Leng J, Li J, Li J, Li B, Yang M, Wang X, Shi Q. Flexible Terahertz Metamaterials Absorber based on VO2. Photonics. 2023; 10(6):621. https://doi.org/10.3390/photonics10060621
Chicago/Turabian StyleJiang, Zhaoxia, Jin Leng, Jin Li, Jianfei Li, Boyang Li, Mao Yang, Xiaolian Wang, and Qiwu Shi. 2023. "Flexible Terahertz Metamaterials Absorber based on VO2" Photonics 10, no. 6: 621. https://doi.org/10.3390/photonics10060621
APA StyleJiang, Z., Leng, J., Li, J., Li, J., Li, B., Yang, M., Wang, X., & Shi, Q. (2023). Flexible Terahertz Metamaterials Absorber based on VO2. Photonics, 10(6), 621. https://doi.org/10.3390/photonics10060621