Photoresponse of Graphene Channel in Graphene-Oxide–Silicon Photodetectors
Abstract
:1. Introduction
2. Methodology
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, A.; Kopytko, M.; Martyniuk, P. Two-dimensional infrared and terahertz detectors: Outlook and status. Appl. Phys. Rev. 2019, 6, 021316. [Google Scholar] [CrossRef]
- Capista, D.; Lozzi, L.; Pelella, A.; Di Bartolomeo, A.; Giubileo, F.; Passacantando, M. Spatially Resolved Photo-Response of a Carbon Nanotube/Si Photodetector. Nanomaterials 2023, 13, 650. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.A.; Park, S.; Khan, M.F.; Bhopal, M.F.; Nazir, G.; Kim, M.; Farooq, A.; Ha, J.; Rehman, S.; Jun, S.C.; et al. Development of directly grown-graphene–silicon Schottky barrier solar cell using co-doping technique. Int. J. Energy Res. 2022, 46, 11510–11522. [Google Scholar] [CrossRef]
- Pelella, A.; Grillo, A.; Faella, E.; Luongo, G.; Askari, M.B.; Di Bartolomeo, A. Graphene−Silicon Device for Visible and Infrared Photodetection. ACS Appl. Mater. Interfaces 2021, 13, 47895–47903. [Google Scholar] [CrossRef]
- Jiang, J.; Wen, Y.; Wang, H.; Yin, L.; Cheng, R.; Liu, C.; Feng, L.; He, J. Recent Advances in 2D Materials for Photodetectors. Adv. Electron. Mater. 2021, 7, 2001125. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, V.X.; Pradhan, P.; Cooney, M.P.; Vinh, N.Q. Effect of High-κ Dielectric Layer on 1/f Noise Behavior in Graphene Field-Effect Transistors. ACS Appl. Nano Mater. 2021, 4, 8539–8545. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q.J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811. [Google Scholar] [CrossRef]
- Scagliotti, M.; Salvato, M.; Crescenzi, M.D.; Mishra, N.; Fabbri, F.; Miseikis, V.; Coletti, C.; Catone, D.; Mario, L.D.; Boscardin, M.; et al. Large-area, high-responsivity, fast and broadband graphene/n-Si photodetector. Nat. Nanotechnol. 2021, 32, 155504. [Google Scholar] [CrossRef]
- Fukushima, S.; Shimatani, M.; Okuda, S.; Ogawa, S.; Kanai, Y.; Ono, T.; Inoue, K.; Matsumoto, K. Photogating for small high-responsivity graphene middle-wavelength infrared photodetectors. Opt. Eng. 2020, 59, 037101. [Google Scholar] [CrossRef]
- Elahi, E.; Khan, M.F.; Rehman, S.; Khalil, H.M.W.; Rehman, M.A.; Kim, D.; Kim, H.; Khan, K.; Shahzad, M.; Iqbal, M.W.; et al. Enhanced electrical and broad spectral (UV-Vis-NIR) photodetection in a Gr/ReSe2/Gr heterojunction. Dalton Trans. 2020, 49, 10017–10027. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.H.; Wang, M.Z.; Hu, H.; Nie, B.; Yu, Y.Q.; Lu, C.Y.; Wang, L.; Hu, J.G.; Xie, C.; Liang, F.X.; et al. Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, H.; Lee, K.C.; Chang, G.E.; Shieh, T.H.; Wu, X.S.; Chang, C.R.; Wu, H.C.; Hung, K.M.; Cheng, H.H. Amplifying photocurrent of graphene on GeSn film by sandwiching a thin oxide between them. Appl. Phys. Lett. 2020, 117, 152106. [Google Scholar] [CrossRef]
- Yang, F.; Yu, K.; Cong, H.; Xue, C.; Cheng, B.; Wang, N.; Zhou, L.; Liu, Z.; Wang, Q. Highly Enhanced SWIR Image Sensors Based on Ge1–xSnx–Graphene Heterostructure Photodetector. ACS Photonics 2019, 6, 1199–1206. [Google Scholar] [CrossRef]
- Riazimehr, S.; Kataria, S.; Bornemann, R.; Bolivar, P.H.; Ruiz, F.J.G.; Engstrom, O.; Godoy, A.; Lemme, M.C. High Photocurrent in Gated Graphene–Silicon Hybrid Photodiodes. ACS Photonics 2017, 4, 1506–1514. [Google Scholar] [CrossRef]
- Fukushima, S.; Shimatani, M.; Okuda, S.; Ogawa, S.; Kanai, Y.; Ono, T.; Inoue, K.; Matsumoto, K. Low dark current and high-responsivity graphene mid-infrared photodetectors using amplification of injected photo-carriers by photo-gating. Opt. Lett. 2019, 44, 2598–2601. [Google Scholar] [CrossRef]
- Kobayashi, S.; Anno, Y.; Takei, K.; Arie, T.; Akita, S. Photoresponse of graphene field-effect-transistor with n-type Si depletion layer gate. Sci. Rep. 2018, 8, 4811. [Google Scholar] [CrossRef]
- Park, H.K.; Choi, J. High Responsivity and Detectivity Graphene-Silicon Majority Carrier Tunneling Photodiodes with a Thin Native Oxide Layer. ACS Photonics 2018, 5, 2895–2903. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416. [Google Scholar] [CrossRef]
- Hernandez, M.; Oca, A.C.M.D.; Leyva, M.O.; Naumis, G.G. How water makes graphene metallic. Phys. Lett. A 2019, 383, 125904. [Google Scholar] [CrossRef]
- Rana, F. Electron-hole generation and recombination rates for Coulomb scattering in graphene. Phys. Rev. B 2007, 76, 155431. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, Q.; Li, W.; Calizo, I.; Shen, T.; Richter, C.A.; Walker, A.R.H.; Liang, X.; Seabaugh, A.; Jena, D.; et al. Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy. Appl. Phys. Lett. 2012, 101, 022105. [Google Scholar] [CrossRef]
- Bartolomeo, A.D. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 2016, 606, 1–58. [Google Scholar] [CrossRef]
- Xu, K.; Zeng, C.; Yan, R.; Ye, P.; Wang, K.; Seabaugh, A.C.; Xing, H.G.; Suehle, J.S.; Richter, C.A.; Gundlach, D.J.; et al. Direct Measurement of Dirac Point Energy at the Graphene/Oxide Interface. Nano Lett. 2013, 13, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.A.; Akhtar, I.; Choi, W.; Akbar, K.; Farooq, A.; Hussain, S.; Shehzad, M.A.; Chun, S.H.; Jung, J.; Seo, Y. Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon 2018, 132, 157–164. [Google Scholar] [CrossRef]
- Peng, S.A.; Jin, Z.; Ma, P.; Zhang, D.Y.; Shi, J.Y.; Niu, J.B.; Wang, X.Y.; Wang, S.Q.; Li, M.; Liu, X.Y.; et al. The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity. Carbon 2015, 82, 500–505. [Google Scholar] [CrossRef]
- Wang, Q.; Kitaura, R.; Suzuki, S.; Miyauchi, Y.; Yamamoto, K.M.Y.; Arai, S.; Shinohara, H. Fabrication and In Situ Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices. ACS Nano 2016, 10, 1475–1480. [Google Scholar] [CrossRef]
- Craciun, M.F.; Russo, S.; Yamamoto, M.; Tarucha, S. Tuneable electronic properties in graphene. Nano Today 2011, 6, 42–60. [Google Scholar] [CrossRef]
- Luo, F.; Zhu, M.; Tan, Y.; Sun, H.; Luo, W.; Peng, G.; Zhu, Z.; Zhang, X.A.; Qin, S. High responsivity graphene photodetectors from visible to near-infrared by photogating effect. AIP Adv. 2018, 8, 115106. [Google Scholar] [CrossRef]
- Liu, F.; Kar, S. Quantum Carrier Reinvestment-Induced Ultrahigh and Broadband Photocurrent Responses in Graphene–Silicon Junctions. ACS Nano 2014, 8, 10270–10279. [Google Scholar] [CrossRef]
- Guo, X.; Wang, W.; Nan, H.; Yu, Y.; Jiang, J.; Zhao, W.; Li, J.; Zafar, Z.; Xiang, N.; Ni, Z.; et al. High-performance graphene photodetector using interfacial gating. Optical 2016, 3, 1066–1070. [Google Scholar] [CrossRef]
- ACS Material. Available online: https://www.acsmaterial.com/ (accessed on 1 May 2023).
- Stubrov, Y.; Nikolenko, A.; Gubanov, V.; Strelchuk, V. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes. Nanoscale Res. Lett. 2016, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Heo, G.; Kim, Y.S.; Chun, S.H.; Seong, M.J. Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene. Nanoscale Res. Lett. 2016, 10, 45. [Google Scholar] [CrossRef]
- Han, M.Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett. 2007, 98, 206805. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Appenzeller, J. Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-effect Transistor Devices. IEEE Int. Electron Dev. Meet. 2008, 21, 509. [Google Scholar]
- Guo, X.; Wang, W.; Nan, H.; Yu, Y.; Jiang, J.; Zhao, W.; Li, J.; Zafar, Z.; Xiang, N.; Ni, Z.; et al. High-performance graphene photodetector using interfacial gating. Optical 2016, 3, 1066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-C.; Chuang, Y.-H.; Huang, C.-K.; Li, H.; Chang, G.-E.; Hung, K.-M.; Cheng, H.H. Photoresponse of Graphene Channel in Graphene-Oxide–Silicon Photodetectors. Photonics 2023, 10, 568. https://doi.org/10.3390/photonics10050568
Lee K-C, Chuang Y-H, Huang C-K, Li H, Chang G-E, Hung K-M, Cheng HH. Photoresponse of Graphene Channel in Graphene-Oxide–Silicon Photodetectors. Photonics. 2023; 10(5):568. https://doi.org/10.3390/photonics10050568
Chicago/Turabian StyleLee, Kuo-Chih, Yu-Hsien Chuang, Chen-Kai Huang, Hui Li, Guo-En Chang, Kuan-Ming Hung, and Hung Hsiang Cheng. 2023. "Photoresponse of Graphene Channel in Graphene-Oxide–Silicon Photodetectors" Photonics 10, no. 5: 568. https://doi.org/10.3390/photonics10050568
APA StyleLee, K. -C., Chuang, Y. -H., Huang, C. -K., Li, H., Chang, G. -E., Hung, K. -M., & Cheng, H. H. (2023). Photoresponse of Graphene Channel in Graphene-Oxide–Silicon Photodetectors. Photonics, 10(5), 568. https://doi.org/10.3390/photonics10050568