Optical Engine Design for a Compact, High-Luminance DLP Projector Using Four-Channel LEDs and a Total Internal Reflection Prism
Abstract
:1. Introduction
2. Design of the Projection Engine
2.1. The Combiner System of 4 Channels
- (a)
- The design of the BP channel
2.2. The Relay Illumination System
- (a)
- The design of the fly-eye
- (b)
- The design of a compact inline TIR prism and relay illumination system
2.3. The Projection Lens
3. System Simulation and Analysis
3.1. System Modeling and Simulation
3.2. The Simulation Performance on DMD and Screen
4. Prototype Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cox, M.A.; Drozdov, A.V. Converting a Texas Instruments DLP4710 DLP evaluation module into a spatial light modulator. Appl. Opt. 2021, 60, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Mehrl, D. Characterization of the Digital Micromirror Devices. IEEE Trans. Electron Devices 2014, 61, 4210–4215. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, J.; Yang, J.; Li, X.; Hu, W. A novel optical digital processor based on digital micromirror device. Proc. SPIE 2008, 6837, 68370C. [Google Scholar] [CrossRef]
- Dudley, D.; Duncan, W.; Slaughter, J. Emerging Digital Micromirror Device (DMD) Applications. Proc. SPIE 2003, 4985, 14–25. [Google Scholar] [CrossRef]
- Huang, J.-W. Optical design of ultrashort throw liquid crystal on silicon projection system. Opt. Eng. 2017, 56, 051408. [Google Scholar] [CrossRef]
- Lazarev, G.; Bonifer, S.; Engel, P.; Höhne, D.; Notni, G. High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor. Proc. SPIE 2017, 10335, 103351B. [Google Scholar] [CrossRef]
- Lin, J.-S.; Hsu, H.-C.; Chang, M.W.; Liu, C.-p. RGB LED illuminator for LCOS panel display. Proc. SPIE 2005, 5942, 59420Y. [Google Scholar]
- Yu, Z.; Hao, H.Q. New PBS multilayer design for LCOS projector. J. Appl. Opt. 2012, 33, 153–158. [Google Scholar] [CrossRef]
- Catelani, M.; Ciani, L.; Barile, G. A new design technique of TFT–LCD display for avionics application. Microelectron. Reliab. 2012, 52, 1776–1780. [Google Scholar] [CrossRef]
- Chen, E.; Zhao, Y.; Lin, S.; Cai, J.; Xu, S.; Ye, Y.; Yan, Q.F.; Guo, T. Design of improved prototype of two-in-one polarization-interlaced stereoscopic projection display. Opt. Express 2019, 27, 4060–4076. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, Z.; Li, Y.; Yan, Y.; Zhou, Z.; Chen, E.; Yan, Q.; Guo, T. Projection optical engine design based on tri-color LEDs and digital light processing technology. Appl. Opt. 2021, 60, 6971–6977. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fang, Z.-l.; Cui, J.-c.; Zhang, X.; Mu, G.-g. Illumination system using LED sources for pocket-size projectors. Appl. Opt. 2007, 46, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-S.; Chiang, Y.-C.; Tsuei, C.-H. Optical design for the DLP pocket projector using LED light source. Phys. Procedia 2011, 19, 301–307. [Google Scholar] [CrossRef]
- Li, D.; Zhang, B.; Zhu, J. Illumination optics design for DMD Pico-projectors based on generalized functional method and microlens array. J. Eur. Opt. Soc.-Rapid Publ. 2019, 15, 11. [Google Scholar] [CrossRef]
- Shin, S.; Jung, Y.; Ahn, T.-J.; Jeong, S.; Lee, S.-G.; Choi, K.-Y. The Compact Systems Design Based on DMD and the Straight Line 2-Channel LED for a Mobile Embedded Pico Projector. J. Disp. Technol. 2012, 8, 219–224. [Google Scholar] [CrossRef]
- Pan, J.-W.; Wang, C.-M.; Lan, H.-C.; Sun, W.-S.; Chang, J.-Y. Homogenized LED-illumination using microlens arrays for a pocket-sized projector. Opt. Express 2007, 15, 10483–10491. [Google Scholar] [CrossRef]
- Pan, J.W.; Tu, S.H.; Wang, C.M.; Chang, J.Y. High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system. Appl. Opt. 2008, 47, 3406–3414. [Google Scholar] [CrossRef]
- Boer, D.; Bruls, D.; Jagt, H. High-brightness source based on luminescent concentration. Opt. Express 2016, 24, A1069–A1074. [Google Scholar] [CrossRef]
- Xgimi Technology Co., Ltd. Available online: https://shop.xgimi.com/goods/1211100779.html (accessed on 3 May 2023).
- Keuper, M.H.; Harbers, G.; Paolini, S. 26.1: RGB LED Illuminator for Pocket-Sized Projectors. SID Symp. Dig. Tech. Pap. 2004, 35, 943–945. [Google Scholar] [CrossRef]
- Hung, C.-C.; Sun, J.-H.; Tzeng, Y.-F.; MacDonald, J.; Lai, W.C.; Li, S.-X.; Fang, Y.-C.; Sun, H.-C.; Chen, Y.-L. A study of extended optimization of U-type rod for LED projectors. Optik 2011, 122, 385–390. [Google Scholar] [CrossRef]
- Bai, X.; Jing, X.; Liao, N. Design method for the high optical efficiency and uniformity illumination system of the projector. Opt. Express 2021, 29, 12502–12515. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.-W.; Lin, S.-H. Achromatic design in the illumination system for a mini projector with LED light source. Opt. Express 2011, 19, 15750–15759. [Google Scholar] [CrossRef] [PubMed]
- Texas Instruments (TI). DLP® Discovery Optics 101 Application Note. Available online: http://focus.ti.com/lit/an/dlpa022/dlpa022.pdf (accessed on 3 May 2023).
- Dang Bei Technology Co., Ltd. Available online: https://item.jd.com/46337738328.html (accessed on 3 May 2023).
RTIR prism | TIR Prism | Inline Prism | Compact Inline Prism | |
Volume | Big | Big | Medium | Small |
Brightness | Moderate | High | High | High |
Contrast | Moderate | Moderate | High | High |
Uniformity | Moderate | Moderate | High | High |
Design complexity | Easy | Easy | Medium | High |
Items | Red | Green | Blue |
---|---|---|---|
Duty | 33% | 38% | 29% |
LED lumens | 2113 | 8546 | 978 |
LED power (W) | 23.3 | 47.0 (BP 45.2) | 34.5 |
Optical efficiency on the screen | 61.6% | 61.5% | 60.5% |
BP pump contribution on CG | / | 152% | / |
Coating transmittance estimation (18 lenses and prism) | 65% | 60% | 54% |
DMD actual reflectivity | 68% | ||
Duty loss | 96% | ||
Output luminous flux | 174 | 1186 | 60 |
Color coordinate | (0.69, 0.31) | (0.33, 0.61) | (0.14, 0.03) |
Total luminous flux | 1420 | ||
White color coordinate | (0.29, 0.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Zhang, Z.; Liu, Y. Optical Engine Design for a Compact, High-Luminance DLP Projector Using Four-Channel LEDs and a Total Internal Reflection Prism. Photonics 2023, 10, 559. https://doi.org/10.3390/photonics10050559
Peng S, Zhang Z, Liu Y. Optical Engine Design for a Compact, High-Luminance DLP Projector Using Four-Channel LEDs and a Total Internal Reflection Prism. Photonics. 2023; 10(5):559. https://doi.org/10.3390/photonics10050559
Chicago/Turabian StylePeng, Shuihai, Zhiyao Zhang, and Yong Liu. 2023. "Optical Engine Design for a Compact, High-Luminance DLP Projector Using Four-Channel LEDs and a Total Internal Reflection Prism" Photonics 10, no. 5: 559. https://doi.org/10.3390/photonics10050559
APA StylePeng, S., Zhang, Z., & Liu, Y. (2023). Optical Engine Design for a Compact, High-Luminance DLP Projector Using Four-Channel LEDs and a Total Internal Reflection Prism. Photonics, 10(5), 559. https://doi.org/10.3390/photonics10050559