Downtaper on Multimode Fibers towards Sustainable Power over Fiber Systems
Abstract
:1. Introduction
2. Principles and Theoretical Study
2.1. Multimode Fiber to Multimode Fiber Transition
2.1.1. Uniform Loss Model
2.1.2. Gaussian Loss Model
2.2. Fiber Tapers
2.3. Tapered Multimode Fiber to Multimode Fiber Transition
3. Design and Experimental Results
3.1. Design and Manufacturing
3.2. Measurements of the Output NA Evolution in the Downtaper Transition Zone
3.3. Measurements of Loss Improvement Using the Transition Taper with MM Injection
3.4. Loss Improvement Measurements with SM Fiber Injection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NA | numerical aperture |
PoF | Power over Fiber |
HPL | high-power laser |
PPC | photovoltaic power converter |
MM | multimode |
SM | single mode |
GI | graded-index |
SI | step-index |
OFL | overfilled launch condition |
FUT | fiber under test |
AFS | AFS200/220/320Y MM fiber |
UCC | FG200UCC MM fiber |
VOA | variable attenuator |
SW | Switch |
PD | photodetectors |
DAQ | data acquisition card |
References
- López-Cardona, J.D.; Vázquez, C.; Montero, D.S.; Lallana, P.C. Remote Optical Powering Using Fiber Optics in Hazardous Environments. J. Light. Technol. 2018, 36, 748–754. [Google Scholar] [CrossRef]
- Algora, C.; Peña, R. Recharging the battery of implantable biomedical devices by light. Artif. Organs 2009, 33, 855–860. [Google Scholar] [CrossRef]
- Worms, K.; Klamouris, C.; Wegh, F.; Meder, L.; Volkmer, D.; Philipps, S.P.; Reichmuth, S.K.; Helmers, H.; Kunadt, A.; Vourvoulakis, J.; et al. Reliable and lightning-safe monitoring of wind turbine rotor blades using optically powered sensors. Wind Energy 2017, 20, 345–360. [Google Scholar] [CrossRef]
- Lopez-Cardona, J.D.; Sanchez Montero, D.; Vazquez, C. Smart Remote Nodes Fed by Power Over Fiber in Internet of Things Applications. IEEE Sens. J. 2019, 19, 7328–7334. [Google Scholar] [CrossRef]
- Roeger, M.; Hiba, B.; Hehmann, J.; Straub, M.; Schmuck, H.; Hedrich, M.; Pfeiffer, T.; Koos, C.; Leuthold, J.; Freude, W. In-Service Monitoring of PON Access Networks With Powerline Independent Devices. J. Opt. Commun. Netw. 2014, 6, 1018–1027. [Google Scholar] [CrossRef]
- López Cardona, J.D.; Lallana, P.C.; Altuna, R.; Fresno-Hernández, A.; Barreiro, X.; Vázquez, C. Optically Feeding 1.75 W With 100 m MMF in Efficient C-RAN Front-Hauls With Sleep Modes. J. Light. Technol. 2021, 39, 7948–7955. [Google Scholar] [CrossRef]
- Matsuura, M.; Nomoto, H.; Mamiya, H.; Higuchi, T.; Masson, D.; Fafard, S. Over 40-W Electric Power and Optical Data Transmission Using an Optical Fiber. IEEE Trans. Power Electron. 2021, 36, 4532–4539. [Google Scholar] [CrossRef]
- Algora, C.; García, I.; Delgado, M.; Peña, R.; Vázquez, C.; Hinojosa, M.; Rey-Stolle, I. Beaming power: Photovoltaic laser power converters for power-by-light. Joule 2022, 6, 340–368. [Google Scholar] [CrossRef]
- Birks, T.; Li, Y. The shape of fiber tapers. J. Light. Technol. 1992, 10, 432–438. [Google Scholar] [CrossRef]
- Marcuse, D. Mode conversion in optical fibers with monotonically increasing core radius. J. Light. Technol. 1987, 5, 125–133. [Google Scholar] [CrossRef]
- Dewynne, J.; Ockendon, J.R.; Wilmott, P. On a Mathematical Model for Fiber Tapering. SIAM J. Appl. Math. 1989, 49, 983–990. [Google Scholar] [CrossRef]
- Xue, S.; van Eijkelenborg, M.A.; Barton, G.W.; Hambley, P. Theoretical, Numerical, and Experimental Analysis of Optical Fiber Tapering. J. Light. Technol. 2007, 25, 1169–1176. [Google Scholar] [CrossRef]
- Hermansson, B.; Yevick, D.; Danielsen, P. Propagating beam analysis of multimode waveguide tapers. IEEE J. Quantum Electron. 1983, 19, 1246–1251. [Google Scholar] [CrossRef]
- Birks, T.A.; Gris-Sánchez, I.; Yerolatsitis, S.; Leon-Saval, S.G.; Thomson, R.R. The photonic lantern. Adv. Opt. Photonics 2015, 7, 107. [Google Scholar] [CrossRef]
- Li, T.; Dong, X.; Chan, C.C.; Zhao, C.L.; Zu, P. Humidity Sensor Based on a Multimode-Fiber Taper Coated With Polyvinyl Alcohol Interacting With a Fiber Bragg Grating. IEEE Sens. J. 2012, 12, 2205–2208. [Google Scholar] [CrossRef]
- Andre, R.M.; Biazoli, C.R.; Silva, S.O.; Marques, M.B.; Cordeiro, C.M.B.; Frazao, O. Strain-Temperature Discrimination Using Multimode Interference in Tapered Fiber. IEEE Photonics Technol. Lett. 2013, 25, 155–158. [Google Scholar] [CrossRef]
- Available online: https://www.thorlabs.com (accessed on 1 April 2023).
- Ōkoshi, T. Optical Fibers; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Etten, W.V.; Plaats, J.V.D. Fundamentals of Optical Fiber Communications; Prentice Hall International Series in Optoelectronics; Prentice Hall: New York, NY, USA, 1991. [Google Scholar]
- Miller, C.M.; Mettler, S.C. A Loss Model for Parabolic-Profile Fiber Splices. Bell Syst. Tech. J. 1978, 57, 3167–3180. [Google Scholar] [CrossRef]
- Mettler, S.C. A General Characterization of Splice Loss for Multimode Optical Fibers. Bell Syst. Tech. J. 1979, 58, 2163–2182. [Google Scholar] [CrossRef]
- Gloge, D.; Marcatili, E.A.J. Multimode theory of graded-core fibers. Bell Syst. Tech. J. 1973, 52, 1563–1578. [Google Scholar] [CrossRef]
- Musa, B.; Rozi, A.A.; Noor, A.S.M.; Ismail, A.; Mahdi, M.A. Effect of fiber profile parameters on the transmission properties of the tapered optical fibers. In Proceedings of the 2011 2nd International Conference on Photonics, Kota Kinabalu, Malaysia, 17–19 October 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Yoshihiro, T.; Ono, Y.; Kasamatsu, T. A wavelength insensitive, non-contact and highly efficient fiber optic connector using up-tapered multimode optical fibers. In Proceedings of the 18th Microoptics Conference, Tokyo, Japan, 27–30 October 2013. [Google Scholar]
- Li, Y.F.; Lit, J.W.Y. Transmission properties of a multimode optical-fiber taper. J. Opt. Soc. Am. A 1985, 2, 462. [Google Scholar] [CrossRef]
- Korposh, S.; James, S.W.; Lee, S.W.; Tatam, R.P. Tapered Optical Fibre Sensors: Current Trends and Future Perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [PubMed]
- Hui, R.; O’Sullivan, M. Fiber Optic Measurement Techniques; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Asadpour, A.; Golnabi, H. Fiber Output Beam Shape Study Using Imaging Technique. J. Appl. Sci. 2010, 10, 312–318. [Google Scholar] [CrossRef]
- Kim, E.M.; Franzen, D.L. Measurement of Far-Field and Near-Field Radiation Patterns from Optical Fibers; US Department of Commerce, National Bureau of Standards: Boulder, CO, USA, 1981; Volume 13. [Google Scholar]
- O’shea, D.C.; C’Shea, D.C. Elements of Modern Optical Design; Wiley: New York, NY, USA, 1985; Volume 2. [Google Scholar]
#Cut | Length (mm) | Cladding Diameter (m) | Taper Ratio | Theoretical NA * | Beam Profiler Measured NA | Integrating Sphere Measured NA |
---|---|---|---|---|---|---|
C1 | 0 | 220 | 1.000 | 0.22 * | 0.22 ± 0.04 | 0.24 ± 0.02 |
C2 | 1.44 | 196 | 1.124 | 0.25 | 0.25 ± 0.04 | 0.27 ± 0.02 |
C3 | 3.75 | 157 | 1.400 | 0.31 | 0.28 ± 0.04 | 0.31 ± 0.02 |
C4 | 4.54 | 144 | 1.530 | 0.34 | 0.32 ± 0.04 | 0.35 ± 0.02 |
C5 | 6.43 | 112 | 1.964 | 0.43 | 0.41 ± 0.04 | 0.43 ± 0.02 |
C6 | 14 | 69 | 3.200 | 0.70 | 0.55 ± 0.04 | 0.66 ± 0.02 |
Type of Injection | Experimental (Integrating Sphere) | Theoretical (Gaussian–Uniform) |
---|---|---|
Input Taper NA | 0.24 | 0.22 |
Output Taper NA | 0.66 | 0.70 |
AFS-GIF Direct Splice (dB) | 10.88 | 11.18 **–13.11 ** |
AFSTaper-GIF Splice (dB) | 8.91 | 8.77 **–11.13 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fresno-Hernández, A.; Rodríguez-Guerra, M.; Rodríguez-Garrido, R.; Vázquez, C. Downtaper on Multimode Fibers towards Sustainable Power over Fiber Systems. Photonics 2023, 10, 513. https://doi.org/10.3390/photonics10050513
Fresno-Hernández A, Rodríguez-Guerra M, Rodríguez-Garrido R, Vázquez C. Downtaper on Multimode Fibers towards Sustainable Power over Fiber Systems. Photonics. 2023; 10(5):513. https://doi.org/10.3390/photonics10050513
Chicago/Turabian StyleFresno-Hernández, Alicia, Marta Rodríguez-Guerra, Roberto Rodríguez-Garrido, and Carmen Vázquez. 2023. "Downtaper on Multimode Fibers towards Sustainable Power over Fiber Systems" Photonics 10, no. 5: 513. https://doi.org/10.3390/photonics10050513
APA StyleFresno-Hernández, A., Rodríguez-Guerra, M., Rodríguez-Garrido, R., & Vázquez, C. (2023). Downtaper on Multimode Fibers towards Sustainable Power over Fiber Systems. Photonics, 10(5), 513. https://doi.org/10.3390/photonics10050513