Surface-Emitting Lasers with Surface Metastructures
Abstract
:1. Introduction
2. HCG-VCSEL
3. BSW-SEL
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iga, K. Vertical-cavity surface-emitting laser: Its conception and evolution. Jpn. J. Appl. Phys. 2008, 47, 1–10. [Google Scholar] [CrossRef]
- Michalzik, R. VCSELs—Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers; Springer Series in Optical Sciences; Springer: Berlin, Germany, 2013; Volume 166. [Google Scholar]
- Liu, A.; Wolf, P.; Lott, J.A.; Bimberg, D. Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Res. 2019, 7, 121–136. [Google Scholar] [CrossRef]
- Larsson, A. Advances in VCSELs for communication and sensing. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1552–1567. [Google Scholar] [CrossRef]
- Günther, A.; Korat, D.; Kotra, P.; Kowalsky, W.; Roth, B. VCSEL as sensing element to measure distance changes in the nm-range. Proc. SPIE 2023, 12439, 124390H. [Google Scholar]
- Dummer, M.; Johnson, K.; Rothwell, S.; Tatah, K.; Hibbs-Brenner, M. The role of VCSELs in 3D sensing and LiDAR. Proc. SPIE 2021, 11692, 116920C. [Google Scholar]
- Kondo, T.; Kitsunai, M.; Komagata, S.; Ohno, S.; Usami, H. Temperature characteristics of all monolithically integrated self-scanning VCSEL array. Proc. SPIE 2019, 10938, 109380C. [Google Scholar]
- Huang, M.; Serkland, D.K.; Camparo, J. A narrow-linewidth three-mirror VCSEL for atomic devices. Appl. Phys. Lett. 2022, 121, 114002. [Google Scholar] [CrossRef]
- Moench, H.; Bader, S.; Gudde, R.; Hellmig, J.; Moser, D.; Ott, A.; Spruit, H.; Weichmann, U.; Weidenfeld, S. ViP-VCSEL with integrated photodiode and new applications. Proc. SPIE 2022, 12020, 1202006. [Google Scholar]
- Mateus, C.F.R.; Huang, M.C.Y.; Deng, Y.; Neureuther, A.R.; Chang-Hasnain, C.J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technol. Lett. 2004, 16, 518–520. [Google Scholar] [CrossRef]
- Karagodsky, V.; Sedgwick, F.G.; Chang-Hasnain, C.J. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 2010, 18, 16973–16988. [Google Scholar] [CrossRef]
- Liu, A.; Hofmann, W.; Bimberg, D. 2D analysis of finite size high-contrast gratings for applications in VCSELs. Opt. Express 2014, 22, 11804–11811. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, R.; Shokooh-Saremi, M. Physical basis for wideband resonant reflectors. Opt. Express 2008, 16, 3456–3462. [Google Scholar] [CrossRef] [PubMed]
- Debernardi, P.; Orta, R.; Gründl, T.; Amann, M.-C. 3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 2013, 49, 137–145. [Google Scholar] [CrossRef]
- Huang, M.C.Y.; Zhou, Y.; Chang-Hasnain, C.J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics 2007, 1, 119–122. [Google Scholar] [CrossRef]
- Boutami, S.; Benbakir, B.; Leclercq, J.-L.; Viktorovitch, P. Compact and polarization controlled 1.55 μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Appl. Phys. Lett. 2007, 91, 071105. [Google Scholar] [CrossRef]
- Gębski, M.; Lott, J.A.; Czyszanowski, T. Electrically injected VCSEL with a composite DBR and MHCG reflector. Opt. Express 2019, 27, 7139–7146. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, C.; Zheng, W.; Bimberg, D.; Liu, A. Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings. Photonics Res. 2022, 10, 1170–1176. [Google Scholar] [CrossRef]
- Haglund, E.; Gustavsson, J.S.; Bengtsson, J.; Haglund, Å.; Larsson, A.; Fattal, D.; Sorin, W.; Tan, M. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings. Opt. Express 2016, 24, 1999–2005. [Google Scholar] [CrossRef]
- Inoue, S.; Kashino, J.; Matsutani, A.; Ohtsuki, H.; Miyashita, T.; Koyama, F. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Jpn. J. Appl. Phys. 2014, 53, 090306. [Google Scholar] [CrossRef]
- Chang, T.-C.; Hashemi, E.; Hong, K.-B.; Bengtsson, J.; Gustavsson, J.; Haglund, Å.; Lu, T.-C. Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors. ACS Photonics 2020, 7, 861–866. [Google Scholar] [CrossRef]
- Chang-Hasnain, C.J.; Yang, W. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 2012, 4, 379–440. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, D.; Chuwongin, S.; Seo, J.-H.; Yang, W.; Shuai, Y.; Berggren, J.; Hammar, M.; Ma, Z.; Zhou, W. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photonics 2012, 6, 615–620. [Google Scholar] [CrossRef]
- Park, G.C.; Xue, W.; Taghizadeh, A.; Semenova, E.; Yvind, K.; Mørk, J.; Chung, I.-S. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser Photonics Rev. 2015, 9, L11–L15. [Google Scholar] [CrossRef]
- Ferrara, J.; Yang, W.; Zhu, L.; Qiao, P.; Chang-Hasnain, C.J. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Opt. Express 2015, 23, 2512–2523. [Google Scholar] [CrossRef]
- Huang, M.C.Y.; Zhou, Y.; Chang-Hasnain, C.J. A nanoelectromechanical tunable laser. Nat. Photonics 2008, 2, 180–184. [Google Scholar] [CrossRef]
- Ansbæk, T.; Chung, I.-S.; Semenova, E.S.; Yvind, K. 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL. IEEE Photonics Technol. Lett. 2013, 25, 365–367. [Google Scholar] [CrossRef]
- Li, K.; Rao, Y.; Chase, C.; Yang, W.; Chang-Hasnain, C.J. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica 2018, 5, 10–13. [Google Scholar] [CrossRef]
- Liu, A.; Yang, B.; Wolf, P.; Zhang, J.; Bimberg, D. GaAs-based subwavelength grating on an AlOx layer for a vertical-cavity surface-emitting laser. OSA Contin. 2020, 3, 317–324. [Google Scholar] [CrossRef]
- Noda, S.; Kitamura, K.; Okino, T.; Yasuda, D.; Tanaka, Y. Photonic-crystal surface-emitting lasers: Review and introduction of modulated-photonic crystals. IEEE J. Sel. Topics Quantum Electron. 2017, 23, 4900107. [Google Scholar] [CrossRef]
- Yoshida, M.; Zoysa, M.D.; Ishizaki, K.; Kunishi, W.; Inoue, T.; Izumi, K.; Hatsuda, R.; Noda, S. Photonic-crystal lasers with high-quality narrow-divergence symmetric beams and their application to LiDAR. J. Phys. Photonics 2021, 3, 022006. [Google Scholar] [CrossRef]
- Kasraian, M.; Botez, D. Metal-grating-outcoupled, surface-emitting distributed-feedback diode lasers. Appl. Phys. Lett. 1996, 69, 2795–2797. [Google Scholar] [CrossRef]
- Mitsunaga, K.; Kameya, M.; Kojima, K.; Noda, S.; Kyuma, K.; Hamanaka, K.; Nakayama, T. Cw surface-emitting grating-coupled GaAs/AlGaAs distributed feedback laser with very narrow beam divergence. Appl. Phys. Lett. 1987, 50, 1788–1980. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, A. Dispersion engineering for a metastructure composed of a high-contrast subwavelength grating and a distributed Bragg reflector. Adv. Photonics Res. 2021, 2, 2000172. [Google Scholar] [CrossRef]
- Choquette, K.D.; Geib, K.M.; Ashby, C.I.H.; Twesten, R.D.; Blum, O.; Hou, H.Q.; Follstaedt, D.M.; Hammons, B.E.; Mathes, D.; Hull, R. Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Sel. Topics Quantum Electron. 1997, 3, 916–926. [Google Scholar] [CrossRef]
- Liu, A.; Wolf, P.; Schulze, J.-H.; Bimberg, D. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer. IEEE Photonics J. 2016, 8, 2700509. [Google Scholar] [CrossRef]
- Chase, C.; Zhou, Y.; Chang-Hasnain, C.J. Size effect of high contrast gratings in VCSELs. Opt. Express. 2009, 17, 24002–24007. [Google Scholar] [CrossRef]
- Al-Samaneh, A.; Sanayeh, M.B.; Renz, S.; Wahl, D.; Michalzik, R. Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications. IEEE Photonics Technol. Lett. 2011, 23, 1049–1051. [Google Scholar] [CrossRef]
- Choquette, K.D.; Leibenguth, R.E. Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photonics Technol. Lett. 1994, 6, 40–42. [Google Scholar] [CrossRef]
- Chua, C.L.; Thornton, R.L.; Treat, D.W.; Donaldson, R.M. Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers. Appl. Phys. Lett. 1998, 73, 1631–1633. [Google Scholar] [CrossRef]
- Debernardi, P.; Ostermann, J.M.; Sondermann, M.; Ackemann, T.; Bava, G.P.; Michalzik, R. Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating VCSELs. IEEE J. Sel. Topics Quantum Electron. 2007, 13, 1340–1348. [Google Scholar] [CrossRef]
- Rao, Y.; Yang, W.; Chase, C.; Huang, M.C.; Worland, D.P.; Khaleghi, S.; Chitgarha, M.R.; Ziyadi, M.; Willner, A.E.; Chang-Hasnain, C.J. Long-wavelength VCSEL using high-contrast grating. IEEE J. Sel. Topics Quantum Electron. 2013, 19, 1701311. [Google Scholar] [CrossRef]
- Yeh, P.; Yariv, A.; Hong, C.-S. Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 1977, 67, 423–438. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhou, X.; Liu, A.; Zheng, W. Mode engineering of semiconductor lasers with vertical periodic layered structures. J. Phys. D. 2021, 55, 065102. [Google Scholar] [CrossRef]
- Brückner, R.; Zakhidov, A.A.; Scholz, R.; Sudzius, M.; Hintschich, S.I.; Früb, H.; Lyssenko, V.G.; Leo, K. Phase-locked coherent modes in a patterned metal–Organic microcavity. Nat. Photonics 2012, 6, 322–326. [Google Scholar] [CrossRef]
- Ferrier, L.; Nguyen, H.S.; Jamois, C.; Berguiga, L.; Symonds, C.; Bellessa, J.; Benyattou, T. Tamm plasmon photonic crystals: From bandgap engineering to defect cavity. APL Photonics 2019, 4, 106101. [Google Scholar] [CrossRef]
- Lee, S.-G.; Magnusson, R. Band flips and bound-state transitions in leaky-mode photonic lattices. Phys. Rev. B 2019, 99, 045304. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Shchukin, V.A. Novel concepts for injection lasers. Opt. Eng. 2002, 41, 3193–3203. [Google Scholar]
- Shchukin, V.A.; Ledentsov, N.N.; Karachinsky, L.Y.; Novikov, I.I.; Shernyakov, Y.M.; Gordeev, N.Y.; Maximov, M.V.; Lifshits, M.B.; Savelyev, A.V.; Kovsh, A.R.; et al. A high-power 975 nm tilted cavity laser with a 0.13 nm K−1 thermal shift of the lasing wavelength. Semicond. Sci. Technol. 2007, 22, 1061–1065. [Google Scholar] [CrossRef]
- Karachinsky, L.Y.; Kuntz, M.; Fiol, G.; Shchukin, V.A.; Ledentsov, N.N.; Bimberg, D. High-power wavelength stabilized 970 nm tilted cavity laser with a 41.3 dB side mode suppression ratio. Appl. Phys. Lett. 2007, 91, 241112. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Shchukin, V.A.; Mikhrin, S.S.; Krestnikov, I.L.; Kozhukhov, A.V.; Kovsh, A.R.; Karachinsky, L.Y.; Maximov, M.V.; Novikov, I.I.; Shernyakov, Y.M. Wavelength-stabilized tilted cavity quantum dot laser. Semicond. Sci. Technol. 2004, 19, 1183–1188. [Google Scholar] [CrossRef]
- Henry, C.H.; Kazarinov, R.F.; Logan, R.A.; Yen, R. Observation of destructive interference in the radiation loss of second-order distributed feedback lasers. IEEE J. Quantum Electron. 1985, QE-21, 151–153. [Google Scholar] [CrossRef]
- Kazarinov, R.F.; Henry, C.H. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE J. Quantum Electron. 1985, QE-21, 144–150. [Google Scholar] [CrossRef]
- Wang, Z.; Ni, L.; Zhang, H.; Jin, J.; Peng, C.; Hu, W. Mode splitting in high-index-contrast grating with mini-scale finite size. Opt. Lett. 2016, 41, 3872–3875. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Witjaksono, G.; Macomber, S.; Botez, D. Analysis of surface-emitting second-order distributed feedback lasers with central grating phase shift. IEEE J. Sel. Topics Quantum Electron. 2003, 9, 1153–1165. [Google Scholar]
- Miyai, E.; Noda, S. Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser. Appl. Phys. Lett. 2005, 86, 111113. [Google Scholar] [CrossRef]
- Xu, D.; Tong, C.; Yoon, S.F.; Zhao, L.; Ding, Y.; Fan, W. Self-heating effect in 1.3 μm p-doped InAs/GaAs quantum dot vertical cavity surface emitting lasers. J. Appl. Phys. 2010, 107, 063107. [Google Scholar] [CrossRef]
- Alaei, S.; Seifouri, M.; Babaabbasi, G.; Olyaee, S. Numerical investigation on self-heating effect in 1.3 µm quantum dot photonic crystal microstructure VCSELs. Eur. Phys. J. Plus. 2022, 137, 515–528. [Google Scholar] [CrossRef]
- Moon, S.; Choi, E.S. VCSEL-based swept source for low-cost optical coherence tomography. Biomed. Opt. Express 2017, 8, 1110–1121. [Google Scholar] [CrossRef]
- Liu, Y.; Ng, W.C.; Choquette, K.D.; Hess, K. Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 2005, 41, 15–25. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, A.; Zhang, J.; Hao, C.; Wang, M.; Zheng, W. Surface-Emitting Lasers with Surface Metastructures. Photonics 2023, 10, 509. https://doi.org/10.3390/photonics10050509
Liu A, Zhang J, Hao C, Wang M, Zheng W. Surface-Emitting Lasers with Surface Metastructures. Photonics. 2023; 10(5):509. https://doi.org/10.3390/photonics10050509
Chicago/Turabian StyleLiu, Anjin, Jing Zhang, Chenxi Hao, Minglu Wang, and Wanhua Zheng. 2023. "Surface-Emitting Lasers with Surface Metastructures" Photonics 10, no. 5: 509. https://doi.org/10.3390/photonics10050509
APA StyleLiu, A., Zhang, J., Hao, C., Wang, M., & Zheng, W. (2023). Surface-Emitting Lasers with Surface Metastructures. Photonics, 10(5), 509. https://doi.org/10.3390/photonics10050509