Comparison of Raman Spectra of Optically Nonlinear LiTaO3:Cr3+ (0.005 wt%) Crystal Laser Excited in Visible (532 nm) and Near-IR (785 nm) Areas
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blázquez-Castro, A.; García-Cabañes, A.; Carrascosa, M. Biological applications of ferroelectric materials. Appl. Phys. Rev. 2018, 5, 041101. [Google Scholar] [CrossRef]
- Irzaman; Siskandar, R.; Nabilah, N.; Aminullah; Yuliarto, B.; Haman, K.A.; Husin, A. Application of lithium tantalate (LiTaO3) films as light sensor to monitor the light status in the Arduino Uno based energy-saving automatic light prototype and passive infrared sensor. Ferroelectrics 2018, 524, 44–55. [Google Scholar] [CrossRef]
- Yang, X.; Lin, S.; Ma, D.; Long, S.; Zhu, Y.; Li, H.; Wang, B. Up-conversion luminescence of LiTaO3:Er3+ phosphors for optical thermometry. Ceram. Intern. 2020, 46, 1178–1182. [Google Scholar] [CrossRef]
- Yao, S.; Han, H.; Jiang, S.; Xiang, B.; Chai, G.; Ruan, S. Design, simulation, and analysis of optical microring resonators in lithium tantalate on insulator. Crystals 2021, 11, 480. [Google Scholar] [CrossRef]
- He, Y.; Wong, Y.P.; Liang, Q.; Wu, T.; Bao, J.; Hashimoto, K.Y. Transverse energy confinement and resonance suppression in SAW resonators using low-cut lithium tantalate. Jap. J. Appl. Phys. 2022, 61, SG1031. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, B.; Liu, W.; Lu, Q.; Wang, L.; Chen, F. Recoverable and rewritable waveguide beam splitters fabricated by tailored femtosecond laser writing of lithium tantalate crystal. Opt. Laser Technol. 2022, 145, 107500. [Google Scholar] [CrossRef]
- Lyu, T.; Dorenbos, P.; Xiong, P.; Wei, Z. LiTaO3:Bi3+, Tb3+, Ga3+, Ge4+: A smart perovskite with high charge carrier storage capacity for X-ray imaging, stress sensing, and non-real-time recording. Adv. Funct. Mater. 2022, 32, 2206024. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Palatnikov, M.N.; Biryukova, I.V.; Titov, R.A.; Makarova, O.V.; Masloboeva, S.M. Monocrystals of Lithium Niobate and Tantalate of Different Composition and Genesis; RAN: Moscow, Russia, 2022; 288p. (In Russian) [Google Scholar]
- Chuchumishev, D.; Gaydardzhiev, A.; Fiebig, T.; Buchvarov, I. Subnanosecond, mid-IR, 0.5 kHz periodically poled stoichiometric LiTaO3 optical parametric oscillator with over 1 W average power. Opt. Lett. 2013, 38, 3347–3349. [Google Scholar] [CrossRef]
- Yin, M. Broadband quasi-phase-matching second-harmonic generation in 0.5 mol% MgO-doped periodically poled stoichiometric LiTaO3. J. Korean Phys. Soc. 2015, 67, 1750–1754. [Google Scholar] [CrossRef]
- Chuchumishev, D.; Trifonov, A.; Oreshkov, B.; Xu, X.; Buchvarov, I. High-energy picosecond kHz optical parametric oscillator/amplifier tunable between 3 and 3.5 µm. Appl. Phys. B 2018, 124, 1–6. [Google Scholar] [CrossRef]
- Prokhorov, A.M.; Kuz’minov, Y.S. Physics and Chemistry of Crystalline Lithium Niobate; Adam Hilger: New York, NY, USA, 1990; p. 237. [Google Scholar]
- Huband, S.; Keeble, D.S.; Zhang, N.; Glazer, A.M.; Bartasyte, A.; Thomas, P.A. Relationship between the structure and optical properties of lithium tantalate at the zero-birefringence point. J. Appl. Phys. 2017, 121, 024102. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Volk, T.R.; Mavrin, B.N.; Kalinnikov, V.T. Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons; Nauka: Moscow, Russia, 2003; p. 255. (In Russian) [Google Scholar]
- Fontana, M.D.; Bourson, P. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices. Appl. Phys. Rev. 2015, 2, 040602. [Google Scholar] [CrossRef]
- Wu, X.-L.; Yany, F.; Zhangy, M.-S.; Jiangy, S.-S.; Fengy, D. The microstructural difference between proton-exchanged LiNbO3 and LiTaO3 crystals by Raman spectroscopy. J. Phys. Condens. Matter 1996, 8, 2073–2080. [Google Scholar] [CrossRef]
- Glass, A.M. Optical spectra of Cr3+ impurity ions in ferroelectric LiNbO3 and LiTaO3. J. Chem. Phys. 1969, 50, 1501–1510. [Google Scholar] [CrossRef]
- Tsuya, H. Optical damage in transition-metal-doped LiTaO3. J. Appl. Phys. 1975, 46, 4323–4333. [Google Scholar] [CrossRef]
- von der Linde, D.; Glass, A.M.; Rodgers, K.F. Optical storage using refractive index changes induced by two-step excitation. J. Appl. Phys. 1976, 47, 217–220. [Google Scholar] [CrossRef]
- Ryba-Romanowski, W.; Golab, S.; Pisarski, W.A.; Dominiak-Dzik, G.; Palatnikov, M.N.; Sidorov, N.V.; Kalinnikov, V.T. Influence of temperature on the optical properties of LiTaO3:Cr. Appl. Phys. Lett. 1997, 70, 2505–2507. [Google Scholar] [CrossRef]
- Sokolska, I.; Golab, S.; Ryba-Romanowski, W. Optical spectroscopy of doped LiTaO3 crystals. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1998, 54, 1685–1694. [Google Scholar] [CrossRef]
- Sokolska, I.; Kuck, S. Optical characterization of Cr3+ doped LiTaO3 crystals relevant for laser application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1998, 54, 1695–1700. [Google Scholar] [CrossRef]
- Golab, S.; Sokolska, I.; Dominiak-Dzik, G.; Palatnikov, M.N.; Sidorov, N.V.; Biryukova, I.; Kalinnikov, V.T.; Ryba-Romanowski, W. Optical absorption and luminescence of LiTaO3:Cr and LiTaO3:Cr,Nd crystals. Proc. SPIE 1999, 3724, 270–273. [Google Scholar] [CrossRef]
- Alexandrovski, A.L.; Foulon, G.; Myers, L.E.; Route, R.K.; Fejer, M.M. UV and visible absorption in LiTaO3. Proc. SPIE 1999, 3610, 44–51. [Google Scholar] [CrossRef]
- Grinberg, M.; Sokolska, I.; Kuck, S.; Jaskolski, W. Temperature dependence of the luminescence decay of Cr3+ ions in LiTaO3: Confined potential model. Phys. Rev. B 1999, 60, 959–965. [Google Scholar] [CrossRef]
- Shen, Y.; Bray, K.L.; Grinberg, M.; Barzowska, J.; Sokolska, I. Identification of multisite behavior in a broadly emitting transition-metal system using pressure. Phys. Rev. B 2000, 61, 14263–14266. [Google Scholar] [CrossRef]
- Shen, Y.; Bray, K.L.; Grinberg, M.; Barzowska, J.; Sokolska, I. High pressure spectroscopy of chromium doped LiTaO3 crystals. High Press. Res. 2000, 18, 125–130. [Google Scholar] [CrossRef]
- Kaczmarek, S.; Swirkowicz, M.; Jablonski, R.; Lukasiewicz, T.; Kwasny, M. Growth and characterization of lithium tantalate single crystals doped with Ho, Tm, Nd, Yb, Pr and doped by diffusion with Cr and Cu. J. Alloys Compd. 2000, 300–301, 322–328. [Google Scholar] [CrossRef]
- Grinberg, M.; Barzowska, J.; Shen, Y.; Bray, K. Crystal field model of the three principal Cr3+ centers in LiTaO3. Radiat. Eff. Defects Solids 2001, 155, 247–251. [Google Scholar] [CrossRef]
- Grinberg, M.; Barzowska, J.; Bray, K.L.; Shen, Y.R. Inhomogeneous broadening of the dominant Cr3+ sites in LiTaO3 system. J. Luminesc. 2001, 94–95, 85–90. [Google Scholar] [CrossRef]
- Grinberg, M.; Barzowska, J.; Shen, Y.R.; Bray, K.L. Inhomogeneous broadening of Cr3+ luminescence in doped LiTaO3. Phys. Rev. B 2001, 63, 214104. [Google Scholar] [CrossRef]
- Grinberg, M. Spectroscopic characterisation of disordered materials doped with chromium. Opt. Mater. 2002, 19, 37–45. [Google Scholar] [CrossRef]
- Grinberg, M.; Suchocki, A. Pressure-induced changes in the energetic structure of the 3d3 ions in solid matrices. J. Luminesc. 2007, 125, 97–103. [Google Scholar] [CrossRef]
- Bagdasarov, K.S.; Batoev, V.B.; Uyukin, E.M. Transient isotropic photoinduced scattering of light in LiTaO3:Cr. Sov. J. Quant. Electron. 1986, 16, 1295–1296. [Google Scholar] [CrossRef]
- Batoev, V.B.; Uyukin, E.M. Photoinduced and Rayleigh light scattering in LiTaO3:Сr. Fiz. Tverd. Tela 1988, 30, 1913–1915. [Google Scholar]
- Burns, G.; O’kane, D.F. Optical and electron-spin-resonance spectra of Yb3+, Nd3+, and Cr3+ in LiNbO3 and LiTaO3. Phys. Rev. 1968, 167, 314–319. [Google Scholar] [CrossRef]
- Chen, C.Y.; Sweeney, K.L.; Halliburton, L.E. Reduction and radiation effects in lithium tantalate. Phys. Status Solidi 1984, 81, 253–257. [Google Scholar] [CrossRef]
- Ahn, S.W.; Kim, J.S.; Choh, S.H.; Yeom, T.H. An induced Cr3+ center in γ-irradiated LiTaO3. J. Kor. Phys. Soc. 1994, 27, 535–537. [Google Scholar]
- Ahn, S.W.; Rudowicz, C.; Choh, S.H.; Han, S.Y. EPR study of two Cr3+ defect centers in LiTaO3 single crystals. J. Korean Phys. Soc. 1997, 30, 99–102. [Google Scholar]
- Yeom, T.H.; Choh, S.H. Magnetic resonance investigations of LiNbO3 and LiTaO3 single crystals. J. Korean Phys. Soc. 1998, 32, S672–S675. [Google Scholar]
- Loyo-Menoyo, M.; Keeble, D.J.; Furukawa, Y.; Kitamura, K. Electron paramagnetic resonance of Cr3+ in near-stoichiometric LiTaO3. J. Appl. Phys. 2005, 97, 123905. [Google Scholar] [CrossRef]
- Zhang, C.-X.; Kuang, X.-Y.; Mao, A.-J.; Wang, H. Optical spectrum, local lattice structure and EPR g factors for Cr3+ impurity ions in MgTiO3 and LiTaO3. Phys. B Condens. Matter 2008, 403, 3114–3118. [Google Scholar] [CrossRef]
- Palatnikov, M.N.; Sandler, V.A.; Sidorov, N.V.; Efremov, I.N.; Makarova, O.V. Methods for controlling the degree of unipolarity of large LiNbO3 crystals. Instrum. Exp. Tech. 2020, 63, 383–387. [Google Scholar] [CrossRef]
- Sanna, S.; Neufeld, S.; Rusing, M.; Berth, G.; Zrenner, A.; Schmidt, W.G. Raman scattering efficiency in LiTaO3 and LiNbO3 crystals. Phys. Rev. B 2015, 91, 224302. [Google Scholar] [CrossRef]
- Shi, L.; Kong, Y.; Yan, W.; Liu, H.; Li, X.; Xie, X.; Zhao, D.; Sun, L.; Xu, J.; Sun, J.; et al. The composition dependence and new assignment of the Raman spectrum in lithium tantalate. Solid State Commun. 2005, 135, 251–256. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Palatnikov, M.N. Raman spectra of lithium niobate crystals heavily doped with zinc and magnesium. Opt. Spectrosc. 2016, 121, 842–850. [Google Scholar] [CrossRef]
- Solin, S.A.; Ramdas, A.K. Raman spectrum of diamond. Phys. Rev. B 1970, 1, 1687–1698. [Google Scholar] [CrossRef]
- Sushchinsky, M.M.; Gorelik, V.S.; Maximov, O.P. Higher-order Raman spectra of GaP. J. Raman Spectrosc. 1978, 7, 26–30. [Google Scholar] [CrossRef]
- Narayanan, P.S. Raman spectrum of cesium bromide. Proc. Indian Acad. Sci. A 1955, 42, 303–308. [Google Scholar] [CrossRef]
- Sidorov, N.; Palatnikov, M.; Pyatyshev, A.; Sverbil, P. Second-order Raman scattering in ferroelectric ceramic solid solutions LiNbxTa1−xO3. Crystals 2022, 12, 456. [Google Scholar] [CrossRef]
- Sidorov, N.; Palatnikov, M.; Pyatyshev, A.; Skrabatun, A. Investigation of the structural perfection of a LiNbO3:Gd3+(0.003):Mg2+(0.65 wt.%) double-doped single crystal using the Raman spectra excited by laser lines in the visible (532 nm) and near-IR (785 nm) regions. Appl. Sci. 2023, 13, 2348. [Google Scholar] [CrossRef]
- Gorelik, V.S.; Abdurakhmonov, S.D. Overtone Raman scattering in lithium niobate single crystals doped with terbium. Crystallogr. Rep. 2022, 67, 252–255. [Google Scholar] [CrossRef]
- Sidorov, N.; Palatnikov, M.; Pyatyshev, A. Raman scattering in a double-doped single crystal LiTaO3:Cr(0.2):Nd(0.45 wt%). Photonics 2022, 9, 712. [Google Scholar] [CrossRef]
- Ruvalds, J.; Zawadowski, A. Two-phonon resonances and hybridization of the resonance with single-phonon states. Phys. Rev. B 1970, 2, 1172–1175. [Google Scholar] [CrossRef]
- Zawadowski, A.; Ruvalds, J. Indirect coupling and antiresonance of two optic phonons. Phys. Rev. Lett. 1970, 24, 1111–1114. [Google Scholar] [CrossRef]
- Ruvalds, J.; Zawadowski, A. Resonances of two phonons from different dispersion branches. Solid State Commun. 1971, 9, 129–132. [Google Scholar] [CrossRef]
Impurity | Concentration in the Charge, wt% | Concentration in LiTaO3:Cr (0.005 wt%) Crystal, wt% |
---|---|---|
Mn, V, Mg, Sn | <3 × 10−4 | <1 × 10−4 |
Pb, Ni | <4 × 10−4 | <2 × 10−4 |
Co, Mo | <4 × 10−4 | <3 × 10−4 |
Si, Fe | <4 × 10−4 | <4 × 10−4 |
Ti | <5 × 10−4 | <5 × 10−4 |
Al | <6 × 10−4 | <6 × 10−4 |
Zr | <7 × 10−4 | <5 × 10−4 |
Ca | <3 × 10−4 | <5 × 10−4 |
Te, Sb | <5 × 10−4 | <4 × 10−4 |
Bi | <2 × 10−4 | <2 × 10−4 |
Rh | <1 × 10−4 | <2 × 10−2 |
λ0 = 532 nm | λ0 = 785 nm | Attribution | ||||
---|---|---|---|---|---|---|
ν, cm−1 | ||||||
140 | 140 | 143 | 142 | 142 | 142 | 1E(x,y)TO |
190 | 190 | 1E(x,y)LO | ||||
203 | 203 | 206 | 207 | 207 | 207 | 1A1(z)TO |
250 | 249 | 247 | 3E(x,y)TO | |||
279 | 277 | 3E(x,y)LO | ||||
312 | 312 | 309 | 314 | 314 | 314 | 4E(x,y)TO |
356 | 353 | 356 | 356 | 356 | 354 | 2A1(z)LO |
377 | 380 | 377 | 380 | 380 | 381 | 3A1(z)TO5E(x,y)TO |
403 | 3A1(z)LO | |||||
458 | 458 | 461 | 462 | 463 | 463 | 7E(x,y)TO |
595 | 595 | 592 | 596 | 599 | 594 | 4A1(z)TO(8E(x,y)TO) |
657 | 654 | 657 | 659 | 659 | 664 | 8E(x,y)LO(9E(x,y)TO) |
864 | 867 | 867 | 870 | 869 | 865 | 4A1(z)LO(9E(x,y)LO) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palatnikov, M.; Sidorov, N.; Pyatyshev, A.; Skrabatun, A. Comparison of Raman Spectra of Optically Nonlinear LiTaO3:Cr3+ (0.005 wt%) Crystal Laser Excited in Visible (532 nm) and Near-IR (785 nm) Areas. Photonics 2023, 10, 439. https://doi.org/10.3390/photonics10040439
Palatnikov M, Sidorov N, Pyatyshev A, Skrabatun A. Comparison of Raman Spectra of Optically Nonlinear LiTaO3:Cr3+ (0.005 wt%) Crystal Laser Excited in Visible (532 nm) and Near-IR (785 nm) Areas. Photonics. 2023; 10(4):439. https://doi.org/10.3390/photonics10040439
Chicago/Turabian StylePalatnikov, Mikhail, Nikolay Sidorov, Alexander Pyatyshev, and Alexander Skrabatun. 2023. "Comparison of Raman Spectra of Optically Nonlinear LiTaO3:Cr3+ (0.005 wt%) Crystal Laser Excited in Visible (532 nm) and Near-IR (785 nm) Areas" Photonics 10, no. 4: 439. https://doi.org/10.3390/photonics10040439
APA StylePalatnikov, M., Sidorov, N., Pyatyshev, A., & Skrabatun, A. (2023). Comparison of Raman Spectra of Optically Nonlinear LiTaO3:Cr3+ (0.005 wt%) Crystal Laser Excited in Visible (532 nm) and Near-IR (785 nm) Areas. Photonics, 10(4), 439. https://doi.org/10.3390/photonics10040439