Versatile Tunning of Compact Microring Waveguide Resonator Based on Lithium Niobate Thin Films
Abstract
:1. Introduction
2. Device Design
3. Characteristic Measurement and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powell, K.; Li, L.; Shams-Ansari, A.; Wang, J.; Meng, D.; Sinclair, N.; Deng, J.; Lončar, M.; Yi, X. Integrated silicon carbide electro-optic modulator. Nat. Commun. 2022, 13, 1851. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Han, X.; Huang, H.; Zhang, P.; Dubey, A.; Xiao, H.; Yuan, M.; Frigg, A.; Nguyen, T.G.; Boes, A.; et al. Monolithic Photonic Integrated Circuit Based on Silicon Nitride and Lithium Niobate on Insulator Hybrid Platform. Adv. Photonics Res. 2022, 3, 2200121. [Google Scholar] [CrossRef]
- Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005, 435, 325–327. [Google Scholar] [CrossRef]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S.; et al. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [Green Version]
- Teng, M.; Fathpour, S.; Safian, R.; Zhuang, L.; Honardoost, A.; Alahmadi, Y.; Polkoo, S.S.; Kojima, K.; Wen, H.; Renshaw, C.K.; et al. Miniaturized Silicon Photonics Devices for Integrated Optical Signal Processors. J. Light. Technol. 2020, 38, 6–17. [Google Scholar] [CrossRef]
- Baehr-Jones, T.; Ding, R.; Liu, Y.; Ayazi, A.; Pinguet, T.; Harris, N.C.; Streshinsky, M.; Lee, P.; Zhang, Y.; Lim, A.E.; et al. Ultralow drive voltage silicon traveling-wave modulator. Opt. Express 2012, 20, 12014–120209. [Google Scholar] [CrossRef] [Green Version]
- Tu, X.; Liow, T.Y.; Song, J.; Luo, X.; Fang, Q.; Yu, M.; Lo, G.Q. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express 2013, 21, 12776–12782. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Ahmed, A.N.R.; Nelan, S.; Shi, S.; Yao, P.; Mercante, A.; Prather, D.W. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett. 2020, 45, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Chu, C.H.; Lin, C.Y. Electro-optically tunable microring resonators on lithium niobate. Opt. Lett. 2007, 32, 2777–2779. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Yu, M.; Zhu, D.; Sinclair, N.; Shams-Ansari, A.; Shao, L.; Holzgrafe, J.; Puma, E.; Zhang, M.; Loncar, M. On-chip electro-optic frequency shifters and beam splitters. Nature 2021, 599, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, K.; Sun, W.; Ren, Y.; Zhang, Y.; Zhang, W.; Wang, C. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 2022, 10, 2366. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Shang, M.; Liu, X.; Wei, Y.; Mi, M.; Zhang, L.; Gong, Y.-X.; Xie, Z.; Zhu, S. Deterministic N-photon state generation using lithium niobate on insulator device. Adv. Photonics Nexus 2022, 2, 016003. [Google Scholar] [CrossRef]
- Shams-Ansari, A.; Yu, M.; Chen, Z.; Reimer, C.; Zhang, M.; Picqué, N.; Lončar, M. Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Commun. Phys. 2022, 5, 88. [Google Scholar] [CrossRef]
- He, Y.; Yang, Q.-F.; Ling, J.; Luo, R.; Liang, H.; Li, M.; Shen, B.; Wang, H.; Vahala, K.; Lin, Q. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 2019, 6, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Surya, J.B.; Liu, X.; Bruch, A.W.; Gong, Z.; Xu, Y.; Tang, H.X. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 2019, 6, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, M.; Yu, M.; Zhu, R.; Hu, H.; Loncar, M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 2019, 10, 978. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Shen, M.; Lu, J.; Surya, J.B.; Tang, H.X. Monolithic Kerr and electro-optic hybrid microcombs. Optica 2022, 9, 1060–1065. [Google Scholar] [CrossRef]
- Weis, R.S.; Gaylord, T.K. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 1985, 37, 191–203. [Google Scholar] [CrossRef]
- Weber, M.J. Handbook of Optical Materials; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- He, Y.; Liang, H.; Luo, R.; Li, M.; Lin, Q. Dispersion engineered high quality lithium niobate microring resonators. Opt. Express 2018, 26, 16315–16322. [Google Scholar] [CrossRef] [PubMed]
- Krasnokutska, I.; Tambasco, J.J.; Li, X.; Peruzzo, A. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express 2018, 26, 897–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.-X.; Gao, R.-H.; Lin, J.; Wang, M.; Chu, W.; Li, W.-B.; Yin, D.-F.; Deng, L.; Fang, Z.-W.; Zhang, J.-H.; et al. Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching. Chin. Phys. Lett. 2020, 37, 084201. [Google Scholar] [CrossRef]
- Bahadori, M.; Goddard, L.L.; Gong, S. Fundamental electro-optic limitations of thin-film lithium niobate microring modulators. Opt. Express 2020, 28, 13731–13749. [Google Scholar] [CrossRef]
- Li, K.; Wang, S.; Han, X.; Wang, Z. Dispersion Measurement of Electro-Optic Coefficient γ22 of Lithium Niobate Based on Photoelastic Modulation. Appl. Sci. 2020, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, M.; Yang, Y.; Hassanien, A.E.; Goddard, L.L.; Gong, S. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express 2020, 28, 29644–29661. [Google Scholar] [CrossRef]
- Wang, T.-J.; Peng, G.-L.; Chan, M.-Y.; Chen, C.-H. On-Chip Optical Microresonators With High Electro-Optic Tuning Efficiency. J. Light. Technol. 2020, 38, 1851–1857. [Google Scholar] [CrossRef]
- Janner, D.; Tulli, D.; García-Granda, M.; Belmonte, M.; Pruneri, V. Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photonics Rev. 2009, 3, 301–313. [Google Scholar] [CrossRef]
- Kai Xin, C.; Xue Peng, L.; Yan Lin, Z.; Kin Seng, C. Lithium-Niobate Mach-Zehnder Interferometer With Enhanced Index Contrast by SiO2 Film. IEEE Photonics Technol. Lett. 2015, 27, 1224–1227. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; He, D.; Hu, Y.; Chen, H.; Liang, W.; Yu, J.; Guan, H.; Luo, Y.; Zhang, J.; et al. Electro-optic beam deflection based on a lithium niobate waveguide with microstructured serrated electrodes. Opt. Lett. 2016, 41, 4739–4742. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Tan, Y.; Chen, P.; Liu, L.; Shi, Y.; Dai, D. Compact Racetrack Resonator on LiNbO3. J. Light. Technol. 2021, 39, 1770–1776. [Google Scholar] [CrossRef]
- Chen, Z.; Peng, R.; Wang, Y.; Zhu, H.; Hu, H. Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector. Opt. Mater. Express 2017, 7, 4010–4017. [Google Scholar] [CrossRef]
- Nisar, M.S.; Zhao, X.; Pan, A.; Yuan, S.; Xia, J. Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide. IEEE Photonics J. 2017, 9, 6600208. [Google Scholar] [CrossRef]
- Kar, A.; Bahadori, M.; Gong, S.; Goddard, L.L. Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate. Opt. Express 2019, 27, 15856–15867. [Google Scholar] [CrossRef] [PubMed]
- Krasnokutska, I.; Chapman, R.J.; Tambasco, J.J.; Peruzzo, A. High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express 2019, 27, 17681–17685. [Google Scholar] [CrossRef] [Green Version]
- Jinesh, K.B.; Lamy, Y.; Klootwijk, J.H.; Besling, W. Maxwell–Wagner instability in bilayer dielectric stacks. Appl. Phys. Lett. 2009, 95, 1858. [Google Scholar] [CrossRef]
- Ahmed, A.N.R.; Shi, S.; Mercante, A.J.; Prather, D.W. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform. Opt. Express 2019, 27, 30741–30751. [Google Scholar] [CrossRef]
- Mahmoud, M.; Cai, L.; Bottenfield, C.; Piazza, G. Lithium Niobate Electro-Optic Racetrack Modulator Etched in Y-Cut LNOI Platform. IEEE Photon. J. 2018, 10, 6600410. [Google Scholar] [CrossRef]
- Ahmed, A.N.R.; Shi, S.; Zablocki, M.; Yao, P.; Prather, D.W. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett. 2019, 44, 618–621. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 2018, 26, 1547–1555. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-Y.; Sua, Y.M.; Fan, H.; Huang, Y.-P. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Contin. 2018, 1, 229–242. [Google Scholar] [CrossRef]
- Wang, J.Q.; Yang, Y.H.; Li, M.; Hu, X.X.; Surya, J.B.; Xu, X.B.; Dong, C.H.; Guo, G.C.; Tang, H.X.; Zou, C.L. Efficient Frequency Conversion in a Degenerate χ(2) Microresonator. Phys. Rev. Lett. 2021, 126, 133601. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Fan, W.; Hansen, A.K.; Chi, M.; Yi, A.; Ou, X. Thermal Behaviors and Optical Parametric Oscillation in 4H-Silicon Carbide Integrated Platforms. Adv. Photonics Res. 2021, 2, 2100068. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Hu, Y.; Li, Y.; Chen, H.; Liu, R.; Tian, G.; Qiu, W.; Yang, T.; Guan, H.; Lu, H. Versatile Tunning of Compact Microring Waveguide Resonator Based on Lithium Niobate Thin Films. Photonics 2023, 10, 424. https://doi.org/10.3390/photonics10040424
Lin Q, Hu Y, Li Y, Chen H, Liu R, Tian G, Qiu W, Yang T, Guan H, Lu H. Versatile Tunning of Compact Microring Waveguide Resonator Based on Lithium Niobate Thin Films. Photonics. 2023; 10(4):424. https://doi.org/10.3390/photonics10040424
Chicago/Turabian StyleLin, Qijing, Yuanzhi Hu, Yang Li, Huajiang Chen, Runhao Liu, Gang Tian, Wentao Qiu, Tiefeng Yang, Heyuan Guan, and Huihui Lu. 2023. "Versatile Tunning of Compact Microring Waveguide Resonator Based on Lithium Niobate Thin Films" Photonics 10, no. 4: 424. https://doi.org/10.3390/photonics10040424
APA StyleLin, Q., Hu, Y., Li, Y., Chen, H., Liu, R., Tian, G., Qiu, W., Yang, T., Guan, H., & Lu, H. (2023). Versatile Tunning of Compact Microring Waveguide Resonator Based on Lithium Niobate Thin Films. Photonics, 10(4), 424. https://doi.org/10.3390/photonics10040424