High-Efficiency Integrated Color Routers by Simple Identical Nanostructures for Visible and Near-Infrared Wavelengths
Abstract
:1. Introduction
2. Design Methods
3. Results
- (1)
- (2)
- Furthermore, the meta-atoms with very small featured sizes (<40 nm) were eliminated due to their difficulty in fabrication. The remaining adjacent meta-atoms were also eliminated to reduce the near-field coupling. As the square-shape meta-atoms were easier to fabricate than the cross-shape ones, the square-shape meta-atoms were left alone to the greatest extent during the process, as shown in Figure 3b.
- (3)
- To further reduce the difficulty of the fabrication, the rest of the cross-shaped nanopillars were replaced with the same square-shape nanopillars, which had similar phases. Figure 3c shows the final structure of the optimized metalens. The side length of the square-shape nanopillars was 180 nm and the height was 800 nm.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, F.; Liu, P.; Shao, X.; Zhou, X. Face anti-spoofing with generated near-infrared images. Multimed Tools Appl. 2020, 79, 21299–21323. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, P.; Zhou, X. Multilevel fusing paired visible light and near-infrared spectral images for face anti-spoofing. Pattern Pecognit. Lett. 2019, 128, 30–37. [Google Scholar] [CrossRef]
- Prasad, M.S.; Shashanka, V.; Soma, B. Dictionary Alignment With Re-Ranking for Low-Resolution NIR-VIS Face Recognition. IEEE Trans. Inf. Forensic Secur. 2019, 14, 886–896. [Google Scholar]
- Raghavendra, R.; Dorizzi, B.; Rao, A.; Kumar, G.H. Particle swarm optimization based fusion of near infrared and visible images for improved face verification. Pattern Recogn. 2011, 44, 401–411. [Google Scholar] [CrossRef]
- Son, C.; Zhang, X. Near-Infrared Fusion via Color Regularization for Haze and Color Distortion Removals. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3111–3126. [Google Scholar] [CrossRef]
- Xu, L.; Liang, P.; Han, J.; Bai, L.; Chen, D.Z. Global Filter of Fusing Near-Infrared and Visible Images in Frequency Domain for Defogging. IEEE Signal Process. Lett. 2022, 29, 1953–1957. [Google Scholar] [CrossRef]
- Awad, M.; Elliethy, A.; Aly, H.A. Adaptive Near-Infrared and Visible Fusion for Fast Image Enhancement. IEEE Trans. Comput. Imaging 2020, 6, 408–418. [Google Scholar] [CrossRef]
- Yuan, Y.; Shen, Y.; Peng, J.; Wang, L.; Zhang, H. Defogging Technology Based on Dual-Channel Sensor Information Fusion of Near-Infrared and Visible Light. J. Sens. 2020, 2020, 8818650. [Google Scholar] [CrossRef]
- Kanan, K.W.; Kishorjit, N.; Dinamani, S.A. Enhancing scene perception using a multispectral fusion of visible-near infrared image pair. IET Image Process. 2019, 13, 2467–2479. [Google Scholar]
- Hyuk-Ju, K.; Sung-Hak, L. Visible and Near-Infrared Image Acquisition and Fusion for Night Surveillance. Chemosensors 2021, 9, 75. [Google Scholar]
- Zhou, K.; Jung, C.; Yu, S. Scale-Aware Multispectral Fusion of RGB and NIR Images Based on Alternating Guidance. IEEE Access 2020, 8, 173197–173207. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Apprications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef] [PubMed]
- Mansouree, M.; Kwon, H.; Arbabi, E.; McClung, A.; Faraon, A.; Arbabi, A. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica 2019, 7, 77–84. [Google Scholar] [CrossRef]
- Abdelraouf, O.A.M.; Wang, Z.; Liu, H.; Dong, Z.; Wang, Q.; Ye, M.; Wang, X.R.; Wang, Q.J.; Liu, H. Recent Advances in Tunable Metasurfaces: Materials, Design and Applications. ACS Nano 2022, 16, 13339–13369. [Google Scholar] [CrossRef]
- Deng, Y.; Cai, Z.; Ding, Y.; Bozhevolnyi, S.I.; Ding, F. Recent progress in metasurface-enabled optical waveplates. Nanophotonics 2022, 11, 2219–2244. [Google Scholar] [CrossRef]
- Yang, J.; Gurung, S.; Bej, S.; Ni, P.; Lee, H.W.H. Active optical metasurfaces: Comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 2022, 85, 036101. [Google Scholar] [CrossRef]
- Guo, L.; Hu, Z.; Wan, R.; Long, L.; Li, T.; Yan, J.; Lin, Y.; Zhang, L.; Zhu, W.; Wang, L. Design of aluminum nitride metalens for broadband ultraviolet incidence routing. Nano Photonics 2019, 8, 171–180. [Google Scholar] [CrossRef]
- Zang, X.; Dong, F.; Yue, F.; Zhang, C.; Xu, L.; Song, Z.; Chen, M.; Chen, P.-Y.; Buller, G.S.; Zhu, Y.; et al. Polarization Encoded Color Image Embedded in a Dielectric Metasurface. Adv. Mater. 2018, 30, 1707499. [Google Scholar] [CrossRef]
- Chen, B.H.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chu, C.H.; Lee, I.C.; Chen, J.-W.; Chen, Y.H.; Lan, Y.-C.; Kuan, C.-H.; et al. GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. Nano Lett. 2017, 17, 6345–6352. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhang, Y.; Lin, R.; Gong, G.; Wang, S.; Zhu, S.; Wang, Z. Pixel-level Bayer-type colour router based on metasurfaces. Nat. Commun. 2022, 13, 3288. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Yang, H.; Lei, T.; Du, L.; Wang, X.; Bu, J.; Chen, Q.; Liu, Y.; Xie, Z.; et al. Single-Layer Bayer Metasurface via Inverse Design. ACS Photonics 2022, 9, 2607–2613. [Google Scholar] [CrossRef]
- Miyata, M.; Nemoto, N.; Shikama, K.; Kobayashi, F.; Hashimoto, T. Full-color-sorting metalense for high-sensitivity image sensors. Optica 2021, 8, 1596–1604. [Google Scholar] [CrossRef]
- Zhao, N.; Catrysse, P.; Fan, S. Perfect RGB-IR Color Routers for Sub-Wavelength Size CMOS Image Sensor Pixels. Adv. Photonics Res. 2021, 2, 2000048. [Google Scholar] [CrossRef]
- Ballew, C.; Roberts, G.; Zheng, T.; Faraon, A. Constraining Continuous Topology Optimizations to Discrete Solutions for Photonic Applications. ACS Photonics 2023, 10, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Gong, G.; Lin, Y.; Fu, B.; Wang, S.; Zhu, S.; Wang, Z. Metasurface-based polarization color routers. Opt. Lasers Eng. 2023, 163, 107472. [Google Scholar] [CrossRef]
- Camayd-Muñoz, P.; Ballew, C.; Roberts, G.; Faraon, A. Multifunctional volumetric meta-optics for color and polarization image sensors. Optica 2020, 7, 280–283. [Google Scholar] [CrossRef]
- Catrysse, P.B.; Zhao, N.; Jin, W.; Fan, S. Subwavelength Bayer RGB color routers with perfect optical efficiency. Nanophotonics 2022, 11, 2381–2387. [Google Scholar] [CrossRef]
- Chang, K.-H.; Chen, Y.-C.; Huang, Y.-S.; Hsu, W.-L.; Lu, G.-H.; Liu, C.-F.; Weng, C.-J.; Lin, Y.-H.; Chen, C.-C.; Lee, C.-C.; et al. Axicon metalens for broadband light harvesting. Nanophotonics 2023, 12, 1309–1315. [Google Scholar] [CrossRef]
Step | For Visible Light | For NIR Light |
---|---|---|
1 | 58% | 53% |
2 | 58% | 60% |
3 | 59% | 60% |
Angle | For Visible Light | For NIR Light |
---|---|---|
0 | 1 | 1 |
10 | 0.63 | 0.67 |
20 | 0.63 | 0.69 |
30 | 0.76 | 0.69 |
40 | 0.43 | 0.39 |
50 | 0.16 | 0.14 |
References | Material | Height of the Nanostructures (nm) | Minimum Size of Nanostructures (nm) | Working Wavelength Range (nm) |
---|---|---|---|---|
Ref. [19] | GaN | 600 | 50 | 400–1000 |
Ref. [20] | Si3N4 | 600 | 125 | 400–700 |
Ref. [21] | TiO2 | 300 | 80 | 380–780 |
Ref. [22] | Si3N4 | 1250 | ≤100 | 400–700 |
Ref. [25] | Si3N4 | 600 | 100 | 400–700 |
Ref. [28] | TiO2 | 150 | ≤100 | 450–900 |
This work | Si3N4 | 800 | 180 | 400–1100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, R.; Xu, X.; Zhou, Y.; Liang, H.; Li, J. High-Efficiency Integrated Color Routers by Simple Identical Nanostructures for Visible and Near-Infrared Wavelengths. Photonics 2023, 10, 536. https://doi.org/10.3390/photonics10050536
Zhong R, Xu X, Zhou Y, Liang H, Li J. High-Efficiency Integrated Color Routers by Simple Identical Nanostructures for Visible and Near-Infrared Wavelengths. Photonics. 2023; 10(5):536. https://doi.org/10.3390/photonics10050536
Chicago/Turabian StyleZhong, Rongxuan, Xiayuan Xu, Yongle Zhou, Haowen Liang, and Juntao Li. 2023. "High-Efficiency Integrated Color Routers by Simple Identical Nanostructures for Visible and Near-Infrared Wavelengths" Photonics 10, no. 5: 536. https://doi.org/10.3390/photonics10050536
APA StyleZhong, R., Xu, X., Zhou, Y., Liang, H., & Li, J. (2023). High-Efficiency Integrated Color Routers by Simple Identical Nanostructures for Visible and Near-Infrared Wavelengths. Photonics, 10(5), 536. https://doi.org/10.3390/photonics10050536