Feasibility Simulation of 3D Benchtop Multi-Pinhole X-ray Fluorescence Computed Tomography with Two Novel Geometries
Abstract
1. Introduction
2. Material and Methods
2.1. MC Model
2.2. Phantom
2.3. Data Acquisition and Processing
2.4. Image Analysis
3. Result
3.1. Comparison of Multi-Pinholes in Different Layers
3.2. Comparison of Multi-Pinholes for Different Magnification
3.3. Comparison of Single Pinholes and Multi-Pinhole
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cesareo, R.; Viezzoli, G. Trace element analysis in biological samples by using XRF spectrometry with secondary radiation. Phys. Med. Biol. 1983, 28, 1209–1218. [Google Scholar] [CrossRef]
- Pushie, M.J.; Pickering, I.J.; Korbas, M.; Hackett, M.J.; George, G.N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 2014, 114, 8499–8541. [Google Scholar] [CrossRef]
- Boisseau, P.; Grodzins, L. Fluorescence tomography using synchrotron radiation at the NSLS. Hyperfine Int. 1987, 33, 283–292. [Google Scholar] [CrossRef]
- Rust, G.F.; Weigelt, J. X-ray fluorescent computer tomography with synchrotron radiation. IEEE Trans. Nucl. Sci. 1998, 45, 75–88. [Google Scholar] [CrossRef]
- Feng, P.; Cong, W.; Wei, B.; Wang, G. Analytic comparison between X-ray fluorescence CT and K-Edge CT. IEEE Trans. Bio-Med. Eng. 2014, 61, 975–985. [Google Scholar] [CrossRef][Green Version]
- Cesareo, R.; Mascarenhas, S. A new tomographic device based on the detection of fluorescent X-rays. Nucl. Instrum. Methods A 1989, 277, 669–672. [Google Scholar] [CrossRef]
- Cheong, S.K.; Jones, B.L.; Siddiqi, A.K.; Liu, F.; Manohar, N.; Cho, S.H. X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp X-rays. Phys. Med. Biol. 2010, 55, 647–662. [Google Scholar] [CrossRef]
- Jones, B.L.; Cho, S.H. The feasibility of polychromatic cone-beam X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparti-cle-loaded objects: A Monte Carlo study. Phys. Med. Biol. 2011, 56, 3719–3730. [Google Scholar] [CrossRef]
- Jone, B.L.; Manohar, N.; Reynoso, F.; Karellas, A.; Cho, S.H. Experimental demonstration of benchtop X-ray fluorescence computed tomography (XFCT) of gold nanoparticle-loaded objects using lead-and tin-filtered polychromatic cone-beams. Phys. Med. Biol. 2012, 57, N457–N467. [Google Scholar] [CrossRef]
- Manohar, N.; Reynoso, F.J.; Diagaradjane, P.; Krishnan, S.; Cho, S.H. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop X-ray fluorescence com-puted tomography. Sci. Rep. 2016, 6, 22079. [Google Scholar] [CrossRef]
- Kuang, Y.; Pratx, G.; Bazalova, M.; Meng, B.; Qian, J.; Xing, L. First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging. IEEE Trans. Med. Imaging 2013, 32, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Wei, B.; He, P.; Zhang, Y.; Feng, P. A geant4-based Monte carlo study of a benchtop multi-pinhole X-ray fluorescence computed tomography imaging. Int. J. Nanomed. 2018, 13, 7207–7216. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Feng, P.; Zhao, R.; Zhang, Y.; An, K.; He, P.; Yan, S.; Zhao, X. Simulation Research of Potential Contrast Agents for X-ray Fluorescence CT with Photon Counting Detector. Front. Phys. 2021, 9, 686988. [Google Scholar]
- Jung, S.; Sung, W.; Ye, S.J. Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: A Monte Carlo study. Int. J. Nanomed. 2017, 12, 5805–8517. [Google Scholar] [CrossRef]
- Sasaya, T.; Sunaguchi, N.; Hyodo, K.; Zeniya, T.; Takeda, T.; Yuasa, T. Dual-energy fluorescent X-ray computed tomography system with a pinhole design: Use of K-Edge discontinuity for scatter correction. Sci. Rep. 2017, 7, 44143. [Google Scholar] [CrossRef]
- Sasaya, T.; Sunaguchi, N.; Hyodo, K.; Zeniya, T.; Yuasa, T. Multi-pinhole fluorescent X-ray computed tomography for molecular imaging. Sci. Rep. 2017, 7, 5742. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Li, R.; Chen, Z. Full-field fan-beam X-ray fluorescence computed tomography system design with linear-array detectors and pinhole colli-mation: A rapid Monte Carlo study. Opt. Eng. 2017, 56, 113107. [Google Scholar] [CrossRef]
- Fu, G.; Meng, L.G.; Eng, P.; Newville, M.; Vargas, P.; Riviere, P.L. Experimental demonstration of novel imaging geometries for X-ray fluorescence computed tomography. Med. Phys. 2013, 40, 061903. [Google Scholar] [CrossRef]
- Meng, L.J.; Li, N.; La Riviere, P.J. X-ray fluorescence emission tomography (XFET) with novel imaging geometries—A Monte Carlo study. IEEE Trans. Nucl. Sci. 2011, 58, 3359–3369. [Google Scholar] [CrossRef][Green Version]
- Schlueter, F.J.; Wang, G.; Hsieh, P.S.; Brink, J.A.; Balfe, D.M.; Vannier, M.W. Longitudinal image deblurring in spiral CT. Radiology 1994, 193, 413–418. [Google Scholar] [CrossRef]
- Rose, A. Vision: Human and electronic. In Applied Solid State Physics; Plenum Press: New York, NY, USA, 1970; pp. 79–160. [Google Scholar]
- Dickerscheid, D.; Lavalaye, J.; Romijn, L.; Habraken, J. Contrast-noise-ratio (CNR) analysis and optimisation of breast-specific gamma imaging (BSGI) acquisition protocols. EJNMMI Res. 2013, 3, 21–33. [Google Scholar]
- Miceli, A.; Thierry, R.; Bettuzzi, M.; Flisch, A.; Hofmann, J.; Sennhauser, U.; Casali, F. Comparison of simulated and measured spectra of an industrial 450 kV X-ray tube. Nucl. Instrum. Methods A 2007, 580, 123–126. [Google Scholar] [CrossRef]
- Redus, R.H.; Pantazis, J.A.; Pantazis, T.J.; Huber, A.C.; Cross, B.J. Characterization of CdTe detectors for quantitative X-ray spectroscopy. IEEE Trans. Nucl. Sci. 2009, 56, 2524–2532. [Google Scholar] [CrossRef]
- Lange, K.; Carson, R. EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 1984, 8, 306–316. [Google Scholar]
- Shepp, L.A.; Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1982, 1, 113–122. [Google Scholar] [CrossRef]
- Guo, J.; Feng, P.; Deng, L.; Luo, Y.; He, P.; Wei, B. Optimization of Detection Angle for Pinhole X-Ray Fluorescence Computed Tomography. Acta Opt. Sin. 2020, 40, 0111017. [Google Scholar]
- Nowotny, R. XMuDat: Photon Attenuation Data on PC; IAEANDS-195; Nuclear Data Services: Vienna, Austria, 1998; Available online: http://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm (accessed on 1 August 1998).
- Ahmed, M.F.; Yasar, S.; Cho, S. A Monte Carlo Model of a Benchtop X-ray Fluorescence Computed Tomography System and Its Application to Validate a Deconvolution-Based X-ray Fluorescence Signal Extraction Method. IEEE Trans. Med. Imaging 2018, 37, 2483–2492. [Google Scholar] [CrossRef]
MP | PMP | |||||
---|---|---|---|---|---|---|
OPD:PDD | 5:5 | 5:3.5 | 5:2.5 | 5:5 | 5:3.5 | 5:2.5 |
9PH | 0.24 | 0.26 | 0.32 | 0.21 | 0.25 | 0.31 |
1PH | 0.32 | 0.32 | 0.42 | 0.35 | 0.47 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, B.; Deng, L.; Jiang, S.; Cao, S.; Zhao, R.; Feng, P. Feasibility Simulation of 3D Benchtop Multi-Pinhole X-ray Fluorescence Computed Tomography with Two Novel Geometries. Photonics 2023, 10, 399. https://doi.org/10.3390/photonics10040399
Ye B, Deng L, Jiang S, Cao S, Zhao R, Feng P. Feasibility Simulation of 3D Benchtop Multi-Pinhole X-ray Fluorescence Computed Tomography with Two Novel Geometries. Photonics. 2023; 10(4):399. https://doi.org/10.3390/photonics10040399
Chicago/Turabian StyleYe, Binqiang, Luzhen Deng, Shanghai Jiang, Sijun Cao, Ruge Zhao, and Peng Feng. 2023. "Feasibility Simulation of 3D Benchtop Multi-Pinhole X-ray Fluorescence Computed Tomography with Two Novel Geometries" Photonics 10, no. 4: 399. https://doi.org/10.3390/photonics10040399
APA StyleYe, B., Deng, L., Jiang, S., Cao, S., Zhao, R., & Feng, P. (2023). Feasibility Simulation of 3D Benchtop Multi-Pinhole X-ray Fluorescence Computed Tomography with Two Novel Geometries. Photonics, 10(4), 399. https://doi.org/10.3390/photonics10040399