# Transmission Properties in Plasma Photonic Crystal Controlled by Magnetic Fields

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Physical Model

## 3. Results and Discussion

#### 3.1. The Effect of Magnetic Field and Electron Density for the TM Polarization

#### 3.2. The Effect of Magnetic Field and Electron Density for the TE Polarization

#### 3.3. The Y-Shaped Tunable PPC Waveguide

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett.
**1987**, 58, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version] - John, S. Strong Localization of Photons in Certain Disordered Dielectric Super Lattices. Phys. Rev. Lett.
**1987**, 58, 2486–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kosaka, H.; Kawashima, T.; Tomita, A.; Notomi, M.; Tamamura, T.; Sato, T.; Kawakami, S. Superprism phenomena in photonic crystals. Phys. Rev. B
**1998**, 58, R10096. [Google Scholar] [CrossRef] - Hu, X.; Chan, C.T. Photonic crystals with silver nanowires as a near-infrared superlens. Appl. Phys. Lett.
**2004**, 85, 1520–1522. [Google Scholar] [CrossRef] - Xie, X.; Yan, S.; Dang, J.; Yang, J.; Xiao, S.; Wang, Y.; Shi, S.; Yang, L.; Dai, D.; Yuan, Y.; et al. Topological Cavity Based on Slow-Light Topological Edge Mode for Broadband Purcell Enhancement. Phys. Rev. Appl.
**2021**, 16, 014036. [Google Scholar] [CrossRef] - Lu, L.; Joannopoulos, J.D.; Soljačić, M. Topological photonics. Nat. Photonics
**2014**, 8, 821–829. [Google Scholar] [CrossRef] [Green Version] - Liu, G.; Wang, F.; Gao, Y.; Jia, B.; Guan, X.; Lu, P.; Song, H. Topology Optimization of Low-Loss Z-Bend 2D Photonic Crystal Waveguide. Photonics
**2023**, 10, 202. [Google Scholar] [CrossRef] - He, C.; Chen, X.-L.; Lu, M.-H.; Li, X.-F.; Wan, W.-W.; Qian, X.-S.; Yin, R.-C.; Chen, Y.-F. Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal. Appl. Phys. Lett.
**2010**, 96, 111111. [Google Scholar] [CrossRef] - Le Thomas, N.; Zhang, H.; Jágerská, J.; Zabelin, V.; Houdré, R.; Sagnes, I.; Talneau, A. Light transport regimes in slow light photonic crystal waveguides. Phys. Rev. B
**2009**, 80, 125332. [Google Scholar] [CrossRef] - Yu, Z.; Wang, Z.; Fan, S. One-way total reflection with one-dimensional magneto-optical photonic crystals. Appl. Phys. Lett.
**2007**, 90, 121133. [Google Scholar] [CrossRef] - Wen, Y.; Liu, S.; Zhang, H.; Wang, L. The absorber realized by 2D photonic crystals with plasma constituents. J. Phys. Appl. Phys.
**2018**, 51, 025108. [Google Scholar] [CrossRef] - Kamboj, G.K.; Yadav, R.P.; Kaler, R.S. Development of Reconfigurable Plasma Column Antenna. IEEE Trans. Plasma Sci.
**2021**, 49, 656–662. [Google Scholar] [CrossRef] - Li, J.; Yao, J.; Yuan, C.; Wang, Y.; Zhou, Z.; Zhang, J. Tunable transmission near Dirac-like point in the designed plasma photonic crystal. Phys. Plasmas
**2022**, 29, 033505. [Google Scholar] [CrossRef] - Liang, Y.; Liu, Z.; Peng, J.; Lin, L.; Lin, R.; Lin, Q. Study on Transmission Characteristics and Bandgap Types of Plasma Photonic Crystal. Photonics
**2021**, 8, 401. [Google Scholar] [CrossRef] - Hojo, H.; Mase, A. Dispersion Relation of Electromagnetic Waves in One-Dimensional Plasma Photonic Crystals. J. Plasma Fusion Res.
**2004**, 80, 89–90. [Google Scholar] [CrossRef] [Green Version] - Sakai, O.; Sakaguchi, T.; Ito, Y.; Tachibana, K. Interaction and control of millimetre-waves with microplasma arrays. Plasma Phys. Control. Fusion
**2005**, 47, B617–B627. [Google Scholar] [CrossRef] - Sakai, O.; Sakaguchi, T.; Tachibana, K. Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves. J. Appl. Phys.
**2007**, 101, 073304. [Google Scholar] [CrossRef] - Iwai, A.; Righetti, F.; Wang, B.; Sakai, O.; Cappelli, M.A. A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial. Phys. Plasmas
**2020**, 27, 023511. [Google Scholar] [CrossRef] - Wang, B.; Rodríguez, J.A.; Miller, O.; Cappelli, M.A. Reconfigurable plasma-dielectric hybrid photonic crystal as a platform for electromagnetic wave manipulation and computing. Phys. Plasmas
**2021**, 28, 043502. [Google Scholar] [CrossRef] - Fan, W.; Jia, M.; Zhu, P.; Liu, C.; Hou, X.; Zhang, J.; He, Y.; Liu, F. Realization of tunable plasma Lieb lattice in dielectric barrier discharges. APL Photonics
**2022**, 7, 116105. [Google Scholar] [CrossRef] - Lin, M.; Fu, L.; Ahmed, S.; Wang, Q.; Zheng, Y.; Liang, Z.; Ouyang, Z. Polarization-Independent Circulator Based on Composite Rod of Ferrite and Plasma in Photonic Crystal Structure. Nanomaterials
**2021**, 11, 381. [Google Scholar] [CrossRef] - Almawgani, A.H.M.; Alhamss, D.N.; Taya, S.A.; Colak, I.; Sharma, A.; Alhawari, A.R.H.; Patel, S.K. The properties of a tunable terahertz filter based on a photonic crystal with a magnetized plasma defect layer. Phys. Fluids
**2022**, 34, 082020. [Google Scholar] [CrossRef] - Drude, P. Zur Elektronentheorie der Metalle. Ann. Phys.
**1900**, 306, 566–613. [Google Scholar] [CrossRef] [Green Version] - Wu, S.; Chen, Y.; Liu, M.; Yang, L.; Zhang, C.; Liu, S. Numerical study on the modulation of THz wave propagation by collisional microplasma photonic crystal. Plasma Sci. Technol.
**2020**, 22, 115402. [Google Scholar] [CrossRef] - Wang, B.; Cappelli, M.A. A plasma photonic crystal bandgap device. Appl. Phys. Lett.
**2016**, 108, 161101. [Google Scholar] [CrossRef] - Wang, B.; Cappelli, M.A. A tunable microwave plasma photonic crystal filter. Appl. Phys. Lett.
**2015**, 107, 171107. [Google Scholar] [CrossRef] - Howlader, M.K.; Yang, Y.; Roth, J.R. Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics. IEEE Trans. Plasma Sci.
**2005**, 33, 1093–1099. [Google Scholar] [CrossRef] - Li, J.; Zhou, C.; Yao, J.; Yuan, C.; Wang, Y.; Zhou, Z.; Zhang, J.; Kudryavtsev, A.A. Valley-dependent topological edge states in plasma photonic crystals. Plasma Sci. Technol.
**2023**, 25, 035001. [Google Scholar] [CrossRef] - Guo, Z.; Long, Y.; Jiang, H.; Ren, J.; Chen, H. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics
**2021**, 3, 036001. [Google Scholar] [CrossRef] - Houriez, L.S.; Mehrpour Bernety, H.; Rodríguez, J.A.; Wang, B.; Cappelli, M.A. Experimental study of electromagnetic wave scattering from a gyrotropic gaseous plasma column. Appl. Phys. Lett.
**2022**, 120, 223101. [Google Scholar] [CrossRef] - Hu, S.; Song, J.; Guo, Z.; Jiang, H.; Deng, F.; Dong, L.; Chen, H. Omnidirectional nonreciprocal absorber realized by the magneto-optical hypercrystal. Opt. Express.
**2022**, 30, 12104–12119. [Google Scholar] [CrossRef] [PubMed] - Wang, Z.; Chong, Y.D.; Joannopoulos, J.D.; Soljačić, M. Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Phys. Rev. Lett.
**2008**, 100, 013905. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Schematic of a two-dimensional plasma photonic crystal. YIG rods (red), plasma (violet). Solid lines represent TE ($\mathrm{0,0},{H}_{z}$) polarization and dashed lines represent TM ($\mathrm{0,0},{E}_{z}$ ) polarization.

**Figure 2.**Transmission spectra of the PPC for different electron densities with or without magnetic fields when considering TM polarization.

**Figure 3.**Transmission spectra of the PPC for the TM mode considering a collision frequency of ${\nu}_{\mathrm{c}}=0.1{\omega}_{\mathrm{pe}}$.

**Figure 4.**The transmission spectra of the PPC at different magnetic fields considering TE polarization.

**Figure 6.**The electric field distribution for the Y-shaped waveguide when the magnetic field is along the (

**a**) +z direction; (

**b**) −z direction.

**Figure 7.**The electric field distribution for the Y-shaped waveguide when (

**a**) the plasma is absent or (

**b**) the external magnetic field is absent.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, H.; Li, J.; Guo, L.; Ma, D.; Yao, J.; Li, H.-P.
Transmission Properties in Plasma Photonic Crystal Controlled by Magnetic Fields. *Photonics* **2023**, *10*, 333.
https://doi.org/10.3390/photonics10030333

**AMA Style**

Wang H, Li J, Guo L, Ma D, Yao J, Li H-P.
Transmission Properties in Plasma Photonic Crystal Controlled by Magnetic Fields. *Photonics*. 2023; 10(3):333.
https://doi.org/10.3390/photonics10030333

**Chicago/Turabian Style**

Wang, Hailu, Jianfei Li, Liang Guo, Dongliang Ma, Jingfeng Yao, and He-Ping Li.
2023. "Transmission Properties in Plasma Photonic Crystal Controlled by Magnetic Fields" *Photonics* 10, no. 3: 333.
https://doi.org/10.3390/photonics10030333