# Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experiment Setup

## 3. Theory

## 4. Result and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Osterwalder, A.; Merkt, F. Using High Rydberg States as Electric Field Sensors. Phys. Rev. Lett.
**1999**, 82, 1831–1834. [Google Scholar] [CrossRef] - Mohapatra, A.K.; Jackson, T.R.; Adams, C.S. Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency. Phys. Rev. Lett.
**2007**, 98, 113003. [Google Scholar] [CrossRef] [Green Version] - Kübler, H.; Shaffer, J.P.; Baluktsian, T.; Löw, R.; Pfau, T. Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nat. Photon.
**2010**, 4, 112–116. [Google Scholar] [CrossRef] [Green Version] - Holloway, C.L.; Gordon, J.A.; Jefferts, S.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements. IEEE Trans. Antennas Propag.
**2014**, 62, 6169–6182. [Google Scholar] [CrossRef] [Green Version] - Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Wilson, P.F.; Cooke, C.M.; Anderson, D.A.; Raithel, G. Atom-Based RF Electric Field Metrology: From Self-Calibrated Measurements to Subwavelength and Near-Field Imaging. IEEE Trans. Antennas Propag.
**2017**, 59, 717–728. [Google Scholar] [CrossRef] - Anderson, D.A.; Sapiro, R.E.; Raithel, G. A Self-Calibrated SI-Traceable Rydberg Atom-Based Radio Frequency Electric Field Probe and Measurement Instrument. IEEE Trans. Antennas Propag.
**2021**, 69, 5931–5941. [Google Scholar] [CrossRef] - Jing, M.; Hu, Y.; Ma, J.; Zhang, H.; Zhang, L.; Xiao, L.; Jia, S. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys.
**2020**, 16, 911–915. [Google Scholar] [CrossRef] - Cai, M.; Xu, Z.; You, S.; Liu, H. Sensitivity Improvement and Determination of Rydberg Atom-Based Microwave Sensor. Photonics
**2022**, 9, 250. [Google Scholar] [CrossRef] - Liu, B.; Zhang, L.H.; Liu, Z.K.; Zhang, Z.Y.; Zhu, Z.H.; Gao, W.; Guo, G.C.; Ding, D.S.; Shi, B.S. Highly Sensitive Measurement of a Megahertz rf Electric Field with a Rydberg-Atom Sensor. Phys. Rev. Appl.
**2022**, 18, 014045. [Google Scholar] [CrossRef] - Meyer, D.H.; Kunz, P.D.; Cox, K.C. Waveguide-Coupled Rydberg Spectrum Analyzer from 0 to 20 GHz. Phys. Rev. Appl.
**2021**, 15, 014053. [Google Scholar] [CrossRef] - Lin, Y.; She, Z.; Chen, Z.; Li, X.; Zhang, C.; Liao, K.; Zhang, X.; Huang, W.; Yan, H.; Zhu, S. The Room-Temperature Rydberg-Atom Receiver For Terahertz Wireless Communications. arXiv
**2022**, arXiv:2205.11021. [Google Scholar] [CrossRef] - Wade, C.G.; Šibalić, N.; de Melo, N.R.; Kondo, J.M.; Adams, C.S.; Weatherill, K.J. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photon.
**2017**, 11, 40–43. [Google Scholar] [CrossRef] [Green Version] - Downes, L.A.; MacKellar, A.R.; Whiting, D.J.; Bourgenot, C.; Adams, C.S.; Weatherill, K.J. Full-Field Terahertz Imaging at Kilohertz Frame Rates Using Atomic Vapor. Phys. Rev. X
**2020**, 10, 011027. [Google Scholar] [CrossRef] [Green Version] - Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Löw, R.; Pfau, T.; Shaffer, J.P. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys.
**2012**, 8, 819–824. [Google Scholar] [CrossRef] - Kumar, S.; Fan, H.; Kübler, H.; Sheng, J.; Shaffer, J.P. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout. Sci. Rep.
**2017**, 7, 42981. [Google Scholar] [CrossRef] [Green Version] - Simons, M.T.; Haddab, A.H.; Gordon, J.A.; Holloway, C.L. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave. Appl. Phys. Lett.
**2019**, 114, 114101. [Google Scholar] [CrossRef] - Koepsell, J.; Thiele, T.; Deiglmayr, J.; Wallraff, A.; Merkt, F. Measuring the polarization of electromagnetic fields using Rabi-rate measurements with spatial resolution: Experiment and theory. Phys. Rev. A
**2017**, 95, 053860. [Google Scholar] [CrossRef] [Green Version] - Sedlacek, J.A.; Schwettmann, A.; Kubler, H.; Shaffer, J.P. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett.
**2013**, 111, 063001. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Robinson, A.K.; Prajapati, N.; Senic, D.; Simons, M.T.; Holloway, C.L. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor. Appl. Phys. Lett.
**2021**, 118, 114001. [Google Scholar] [CrossRef] - Simons, M.T.; Gordon, J.A.; Holloway, C.L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor. Appl. Opt.
**2018**, 57, 6456. [Google Scholar] [CrossRef] - Holloway, C.L.; Gordon, J.A.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl. Phys. Lett.
**2014**, 104, 244102. [Google Scholar] [CrossRef] [Green Version] - Meyer, D.H.; Cox, K.C.; Fatemi, F.K.; Kunz, P.D. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl. Phys. Lett.
**2018**, 112, 211108. [Google Scholar] [CrossRef] [Green Version] - Jiao, Y.; Han, X.; Fan, J.; Raithel, G.; Zhao, J.; Jia, S. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication. Appl. Phys. Express
**2019**, 12, 126002. [Google Scholar] [CrossRef] [Green Version] - Li, S.; Yuan, J.; Wang, L. Improvement of Microwave Electric Field Measurement Sensitivity via Multi-Carrier Modulation in Rydberg Atoms. Appl. Sci.
**2020**, 10, 8110. [Google Scholar] [CrossRef] - Kumar, S.; Fan, H.; Kubler, H.; Jahangiri, A.J.; Shaffer, J.P. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express
**2017**, 25, 8625–8637. [Google Scholar] [CrossRef] [Green Version] - Anderson, D.A.; Sapiro, R.E.; Raithel, G. An atomic receiver for AM and FM radio communication. IEEE Trans. Antennas Propag.
**2020**, 69, 2455–2462. [Google Scholar] [CrossRef] [Green Version] - Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Novotny, D. Detecting and Receiving Phase-Modulated Signals With a Rydberg Atom-Based Receiver. IEEE Antennas Wirel. Propag. Lett.
**2019**, 18, 1853–1857. [Google Scholar] [CrossRef] [Green Version] - Simons, M.T.; Artusio-Glimpse, A.B.; Holloway, C.L.; Imhof, E.; Jefferts, S.R.; Wyllie, R.; Sawyer, B.C.; Walker, T.G. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning. Phys. Rev. A
**2021**, 104, 032824. [Google Scholar] [CrossRef] - Li, H.; Hu, J.; Bai, J.; Shi, M.; Jiao, Y.; Zhao, J.; Jia, S. Rydberg atom-based AM receiver with a weak continuous frequency carrier. Opt. Express
**2022**, 30, 13522–13529. [Google Scholar] [CrossRef] - Holloway, C.L.; Simons, M.T.; Haddab, A.H.; Williams, C.J.; Holloway, M.W. A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music. AIP Adv.
**2019**, 9, 065110. [Google Scholar] [CrossRef] - Zou, H.; Song, Z.; Mu, H.; Feng, Z.; Qu, J.; Wang, Q. Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium. Appl. Sci.
**2020**, 10, 1346. [Google Scholar] [CrossRef] [Green Version] - Jia, F.D.; Liu, X.B.; Mei, J.; Yu, Y.H.; Zhang, H.Y.; Lin, Z.Q.; Dong, H.Y.; Zhang, J.; Xie, F.; Zhong, Z.P. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field. Phys. Rev. A
**2021**, 103, 063113. [Google Scholar] [CrossRef] - Du, Y.; Cong, N.; Wei, X.; Zhang, X.; Luo, W.; He, J.; Yang, R. Realization of multiband communications using different Rydberg final states. AIP Adv.
**2022**, 12, 065118. [Google Scholar] [CrossRef] - Meyer, D.H.; Hill, J.C.; Kunz, P.D.; Cox, K.C. Simultaneous Multiband Demodulation Using a Rydberg Atomic Sensor. Phys. Rev. Appl.
**2023**, 19. [Google Scholar] [CrossRef] - Liu, Z.K.; Zhang, L.H.; Liu, B.; Zhang, Z.Y.; Guo, G.C.; Ding, D.S.; Shi, B.S. Deep learning enhanced Rydberg multifrequency microwave recognition. Nat. Commun.
**2022**, 13, 1997. [Google Scholar] [CrossRef] - Orazbayev, B.; Fleury, R. Far-field subwavelength acoustic imaging by deep learning. Phys. Rev. X
**2020**, 10, 031029. [Google Scholar] [CrossRef] - Carr, C.; Tanasittikosol, M.; Sargsyan, A.; Sarkisyan, D.; Adams, C.S.; Weatherill, K.J. Three-photon electromagnetically induced transparency using Rydberg states. Opt. Lett.
**2012**, 37, 3858–3860. [Google Scholar] [CrossRef] - Shaffer, J.; Kübler, H. A read-out enhancement for microwave electric field sensing with Rydberg atoms. Proc. SPIE
**2018**, 10674, 106740C. [Google Scholar] - You, S.H.; Cai, M.H.; Zhang, S.S.; Xu, Z.S.; Liu, H.P. Microwave-field sensing via electromagnetically induced absorption of Rb irradiated by three-color infrared lasers. Opt. Express
**2022**, 30, 16619–16629. [Google Scholar] [CrossRef] [PubMed] - Black, E.D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys.
**2001**, 69, 79–87. [Google Scholar] [CrossRef] [Green Version] - Liao, K.Y.; Tu, H.T.; Yang, S.Z.; Chen, C.J.; Liu, X.H.; Liang, J.; Zhang, X.D.; Yan, H.; Zhu, S.L. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A
**2020**, 101, 053432. [Google Scholar] [CrossRef] - Robinson, A.K.; Artusio-Glimpse, A.B.; Simons, M.T.; Holloway, C.L. Atomic spectra in a six-level scheme for electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Phys. Rev. A
**2021**, 103, 023704. [Google Scholar] [CrossRef] - Thaicharoen, N.; Moore, K.R.; Anderson, D.A.; Powel, R.C.; Peterson, E.; Raithel, G. Electromagnetically induced transparency, absorption, and microwave-field sensing in a Rb vapor cell with a three-color all-infrared laser system. Phys. Rev. A
**2019**, 100, 063427. [Google Scholar] [CrossRef] [Green Version] - Xu, Z.S.; Wang, H.M.; Cai, M.H.; You, S.H.; Liu, H.P. High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency. Chin. Phys. B
**2022**, 31, 123201. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Experimental schematic setup of the three infrared laser driven Rb Rydberg-based MW receiver and (

**b**) relevant energy levels diagram. All infrared lights are generated by external cavity semiconductor lasers and frequency-stabilized by PDH system with the ultra stable Fabry–Perot cavity. The Rb atoms in vapor cell are excited successively to the $41{\mathrm{F}}_{7/2}$ Rydberg state by $780\mathrm{nm}$, $776\mathrm{nm}$, $1260\mathrm{nm}$ lasers, which is also coupled with MW1 on the transition $41{\mathrm{F}}_{7/2}\leftrightarrow 41{\mathrm{G}}_{9/2}$ and MW2 on neighboring transition $41{\mathrm{F}}_{7/2}\leftrightarrow 42{\mathrm{D}}_{5/2}$, as shown in underlying figure. The terminology in the upper figure about optical components: $\lambda /2$-WP is acronym of a half-wave plate; PBS is polarization beam splitter; ID is iris diaphragms; PD is photodetector; DM is dichroic mirror and M is silver mirror.

**Figure 2.**The recorded photoelectric signal intensity of baseband signals by our Rydberg atom-based receiver for different E-intensities of MW1 and MW2. In either case, (

**a**) or (

**b**), the intensity of the baseband signal with ${\omega}_{1}=2\times 2\pi $ kHz (${\omega}_{2}=4\times 2\pi $ kHz) modulated onto MW1 (MW2) gradually decay with the intrusion of the opponent MW power beyond ${E}_{\mathrm{MW}}\sim 2.5\mathrm{mV}/\mathrm{cm}$. However, in both cases, the signal intensity climbs up along its own channel microwave intensity until reaching the maximum at ${E}_{\mathrm{MW}}\sim 13\mathrm{mV}/\mathrm{cm}$, and then drops again, implying an available power optimization.

**Figure 3.**The power spectrum of fast Fourier transform of the photoelectric signal accepted by the Rydberg atom-based receiver in the condition of various pairs of MW E-intensities. (

**a**) The increasing of the MW1 power enhances the signal amplitude of its own channel, until ${E}_{\mathrm{MW}1}\sim 11\mathrm{mV}/\mathrm{cm}$, but weakens its opponent always gradually. (

**b**) Similar to (

**a**), but the turning point occurs at ${E}_{\mathrm{MW}2}\sim 10\mathrm{mV}/\mathrm{cm}$.

**Figure 4.**(

**a**) Experimental and (

**b**) theoretical result of the situation that the power of two channels are changed simultaneously. The gradual pink surface represents the variation of ${\omega}_{1}=2\times 2\pi $ kHz frequency component, and the gradual dark blue surface signifies the ${\omega}_{2}=4\times 2\pi $ kHz frequency component. The magenta line is the intersection of two surfaces, which means the intensity of two frequency component are equal when the work point is set on this line. Whether from the experimental observation or the theoretical simulation, we can see that the influence of one channel on the optical gain reduction of the other channel is very obvious, and the theoretical and experimental results are consistent in the trend.

**Figure 5.**The spectral AT splitting for small change of the microwave field at target signal channel (

**a**) and auxiliary channel (

**b**). The auxiliary field helps to make the AT splitting gets more obvious for better quantization of the weak target field, but it reduces the sensitivity of the dynamic microwave-optical amplifying gain, which is much smaller than that of the auxiliary field itself.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

You, S.; Cai, M.; Zhang, H.; Xu, Z.; Liu, H.
Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication. *Photonics* **2023**, *10*, 328.
https://doi.org/10.3390/photonics10030328

**AMA Style**

You S, Cai M, Zhang H, Xu Z, Liu H.
Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication. *Photonics*. 2023; 10(3):328.
https://doi.org/10.3390/photonics10030328

**Chicago/Turabian Style**

You, Shuhang, Minghao Cai, Haoan Zhang, Zishan Xu, and Hongping Liu.
2023. "Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication" *Photonics* 10, no. 3: 328.
https://doi.org/10.3390/photonics10030328