Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication
Abstract
:1. Introduction
2. Experiment Setup
3. Theory
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osterwalder, A.; Merkt, F. Using High Rydberg States as Electric Field Sensors. Phys. Rev. Lett. 1999, 82, 1831–1834. [Google Scholar] [CrossRef]
- Mohapatra, A.K.; Jackson, T.R.; Adams, C.S. Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 2007, 98, 113003. [Google Scholar] [CrossRef] [Green Version]
- Kübler, H.; Shaffer, J.P.; Baluktsian, T.; Löw, R.; Pfau, T. Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nat. Photon. 2010, 4, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.L.; Gordon, J.A.; Jefferts, S.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements. IEEE Trans. Antennas Propag. 2014, 62, 6169–6182. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Wilson, P.F.; Cooke, C.M.; Anderson, D.A.; Raithel, G. Atom-Based RF Electric Field Metrology: From Self-Calibrated Measurements to Subwavelength and Near-Field Imaging. IEEE Trans. Antennas Propag. 2017, 59, 717–728. [Google Scholar] [CrossRef]
- Anderson, D.A.; Sapiro, R.E.; Raithel, G. A Self-Calibrated SI-Traceable Rydberg Atom-Based Radio Frequency Electric Field Probe and Measurement Instrument. IEEE Trans. Antennas Propag. 2021, 69, 5931–5941. [Google Scholar] [CrossRef]
- Jing, M.; Hu, Y.; Ma, J.; Zhang, H.; Zhang, L.; Xiao, L.; Jia, S. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys. 2020, 16, 911–915. [Google Scholar] [CrossRef]
- Cai, M.; Xu, Z.; You, S.; Liu, H. Sensitivity Improvement and Determination of Rydberg Atom-Based Microwave Sensor. Photonics 2022, 9, 250. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, L.H.; Liu, Z.K.; Zhang, Z.Y.; Zhu, Z.H.; Gao, W.; Guo, G.C.; Ding, D.S.; Shi, B.S. Highly Sensitive Measurement of a Megahertz rf Electric Field with a Rydberg-Atom Sensor. Phys. Rev. Appl. 2022, 18, 014045. [Google Scholar] [CrossRef]
- Meyer, D.H.; Kunz, P.D.; Cox, K.C. Waveguide-Coupled Rydberg Spectrum Analyzer from 0 to 20 GHz. Phys. Rev. Appl. 2021, 15, 014053. [Google Scholar] [CrossRef]
- Lin, Y.; She, Z.; Chen, Z.; Li, X.; Zhang, C.; Liao, K.; Zhang, X.; Huang, W.; Yan, H.; Zhu, S. The Room-Temperature Rydberg-Atom Receiver For Terahertz Wireless Communications. arXiv 2022, arXiv:2205.11021. [Google Scholar] [CrossRef]
- Wade, C.G.; Šibalić, N.; de Melo, N.R.; Kondo, J.M.; Adams, C.S.; Weatherill, K.J. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photon. 2017, 11, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Downes, L.A.; MacKellar, A.R.; Whiting, D.J.; Bourgenot, C.; Adams, C.S.; Weatherill, K.J. Full-Field Terahertz Imaging at Kilohertz Frame Rates Using Atomic Vapor. Phys. Rev. X 2020, 10, 011027. [Google Scholar] [CrossRef] [Green Version]
- Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Löw, R.; Pfau, T.; Shaffer, J.P. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 2012, 8, 819–824. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, H.; Kübler, H.; Sheng, J.; Shaffer, J.P. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout. Sci. Rep. 2017, 7, 42981. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.T.; Haddab, A.H.; Gordon, J.A.; Holloway, C.L. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave. Appl. Phys. Lett. 2019, 114, 114101. [Google Scholar] [CrossRef]
- Koepsell, J.; Thiele, T.; Deiglmayr, J.; Wallraff, A.; Merkt, F. Measuring the polarization of electromagnetic fields using Rabi-rate measurements with spatial resolution: Experiment and theory. Phys. Rev. A 2017, 95, 053860. [Google Scholar] [CrossRef] [Green Version]
- Sedlacek, J.A.; Schwettmann, A.; Kubler, H.; Shaffer, J.P. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 2013, 111, 063001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, A.K.; Prajapati, N.; Senic, D.; Simons, M.T.; Holloway, C.L. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor. Appl. Phys. Lett. 2021, 118, 114001. [Google Scholar] [CrossRef]
- Simons, M.T.; Gordon, J.A.; Holloway, C.L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor. Appl. Opt. 2018, 57, 6456. [Google Scholar] [CrossRef]
- Holloway, C.L.; Gordon, J.A.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl. Phys. Lett. 2014, 104, 244102. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.H.; Cox, K.C.; Fatemi, F.K.; Kunz, P.D. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl. Phys. Lett. 2018, 112, 211108. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Han, X.; Fan, J.; Raithel, G.; Zhao, J.; Jia, S. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication. Appl. Phys. Express 2019, 12, 126002. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yuan, J.; Wang, L. Improvement of Microwave Electric Field Measurement Sensitivity via Multi-Carrier Modulation in Rydberg Atoms. Appl. Sci. 2020, 10, 8110. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, H.; Kubler, H.; Jahangiri, A.J.; Shaffer, J.P. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express 2017, 25, 8625–8637. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.A.; Sapiro, R.E.; Raithel, G. An atomic receiver for AM and FM radio communication. IEEE Trans. Antennas Propag. 2020, 69, 2455–2462. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Novotny, D. Detecting and Receiving Phase-Modulated Signals With a Rydberg Atom-Based Receiver. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1853–1857. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.T.; Artusio-Glimpse, A.B.; Holloway, C.L.; Imhof, E.; Jefferts, S.R.; Wyllie, R.; Sawyer, B.C.; Walker, T.G. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning. Phys. Rev. A 2021, 104, 032824. [Google Scholar] [CrossRef]
- Li, H.; Hu, J.; Bai, J.; Shi, M.; Jiao, Y.; Zhao, J.; Jia, S. Rydberg atom-based AM receiver with a weak continuous frequency carrier. Opt. Express 2022, 30, 13522–13529. [Google Scholar] [CrossRef]
- Holloway, C.L.; Simons, M.T.; Haddab, A.H.; Williams, C.J.; Holloway, M.W. A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music. AIP Adv. 2019, 9, 065110. [Google Scholar] [CrossRef]
- Zou, H.; Song, Z.; Mu, H.; Feng, Z.; Qu, J.; Wang, Q. Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium. Appl. Sci. 2020, 10, 1346. [Google Scholar] [CrossRef] [Green Version]
- Jia, F.D.; Liu, X.B.; Mei, J.; Yu, Y.H.; Zhang, H.Y.; Lin, Z.Q.; Dong, H.Y.; Zhang, J.; Xie, F.; Zhong, Z.P. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field. Phys. Rev. A 2021, 103, 063113. [Google Scholar] [CrossRef]
- Du, Y.; Cong, N.; Wei, X.; Zhang, X.; Luo, W.; He, J.; Yang, R. Realization of multiband communications using different Rydberg final states. AIP Adv. 2022, 12, 065118. [Google Scholar] [CrossRef]
- Meyer, D.H.; Hill, J.C.; Kunz, P.D.; Cox, K.C. Simultaneous Multiband Demodulation Using a Rydberg Atomic Sensor. Phys. Rev. Appl. 2023, 19. [Google Scholar] [CrossRef]
- Liu, Z.K.; Zhang, L.H.; Liu, B.; Zhang, Z.Y.; Guo, G.C.; Ding, D.S.; Shi, B.S. Deep learning enhanced Rydberg multifrequency microwave recognition. Nat. Commun. 2022, 13, 1997. [Google Scholar] [CrossRef]
- Orazbayev, B.; Fleury, R. Far-field subwavelength acoustic imaging by deep learning. Phys. Rev. X 2020, 10, 031029. [Google Scholar] [CrossRef]
- Carr, C.; Tanasittikosol, M.; Sargsyan, A.; Sarkisyan, D.; Adams, C.S.; Weatherill, K.J. Three-photon electromagnetically induced transparency using Rydberg states. Opt. Lett. 2012, 37, 3858–3860. [Google Scholar] [CrossRef]
- Shaffer, J.; Kübler, H. A read-out enhancement for microwave electric field sensing with Rydberg atoms. Proc. SPIE 2018, 10674, 106740C. [Google Scholar]
- You, S.H.; Cai, M.H.; Zhang, S.S.; Xu, Z.S.; Liu, H.P. Microwave-field sensing via electromagnetically induced absorption of Rb irradiated by three-color infrared lasers. Opt. Express 2022, 30, 16619–16629. [Google Scholar] [CrossRef] [PubMed]
- Black, E.D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.Y.; Tu, H.T.; Yang, S.Z.; Chen, C.J.; Liu, X.H.; Liang, J.; Zhang, X.D.; Yan, H.; Zhu, S.L. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A 2020, 101, 053432. [Google Scholar] [CrossRef]
- Robinson, A.K.; Artusio-Glimpse, A.B.; Simons, M.T.; Holloway, C.L. Atomic spectra in a six-level scheme for electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Phys. Rev. A 2021, 103, 023704. [Google Scholar] [CrossRef]
- Thaicharoen, N.; Moore, K.R.; Anderson, D.A.; Powel, R.C.; Peterson, E.; Raithel, G. Electromagnetically induced transparency, absorption, and microwave-field sensing in a Rb vapor cell with a three-color all-infrared laser system. Phys. Rev. A 2019, 100, 063427. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.S.; Wang, H.M.; Cai, M.H.; You, S.H.; Liu, H.P. High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency. Chin. Phys. B 2022, 31, 123201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, S.; Cai, M.; Zhang, H.; Xu, Z.; Liu, H. Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication. Photonics 2023, 10, 328. https://doi.org/10.3390/photonics10030328
You S, Cai M, Zhang H, Xu Z, Liu H. Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication. Photonics. 2023; 10(3):328. https://doi.org/10.3390/photonics10030328
Chicago/Turabian StyleYou, Shuhang, Minghao Cai, Haoan Zhang, Zishan Xu, and Hongping Liu. 2023. "Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication" Photonics 10, no. 3: 328. https://doi.org/10.3390/photonics10030328
APA StyleYou, S., Cai, M., Zhang, H., Xu, Z., & Liu, H. (2023). Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication. Photonics, 10(3), 328. https://doi.org/10.3390/photonics10030328