Experimental Study on Measuring Petzval Image Plane of Streak Tube with Single Image
Abstract
:1. Introduction
2. Principle
3. Experiments and Analysis
3.1. Experiments
3.2. Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meezan, N.B.; Edwards, M.J.; Hurricane, O.A.; Patel, P.K.; Callahan, D.A.; Hsing, W.W.; Town, R.P.J.; Albert, F.; Amendt, P.A.; Berzak Hopkins, L.F.; et al. Indirect drive ignition at the National Ignition Facility. Plasma Phys. Control. Fusion 2017, 59, 014021. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Sun, L.; Li, H.; Peng, X.; Qu, J. Fluorescence lifetime imaging microscopy using a streak camera. Proc.SPIE 8948, Multiphoton Microsc. Biomed. Sci. XIV 2014, 8948, 1–5. [Google Scholar]
- Heng, L.; Yong-hong, S.; Yan, W.; Jun-le, Q.; Han-ben, N. Improving the precision of fluorescence lifetime measurement using a streak camera. Chin. Opt. Lett. 2010, 8, 934–936. [Google Scholar]
- Qu, J.; Liu, L.; Guo, B.; Lin, Z.; Hu, T.; Tian, J.; Wang, S.; Zhang, J.; Niu, H. Development of a multispectral multi-photon fluorescence lifetime imaging microscopy system using a streak camera. Proc. SPIE 2005, 5630, 510–516. [Google Scholar]
- Becker, W. Fluorescence lifetime imaging—Techniques and applications. J. Microsc. 2012, 247, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Krishman, R.V.; Saitoh, H.; Terada, H.; Centonze, V.E.; Herman, B. Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev. Sci. Instrum. 2003, 74, 2714–2721. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Liang, J.; Li, C. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nat. Lett. 2014, 516, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, P.; Zhu, L.; Wang, L.V. Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nat. Commun. 2020, 11, 5252. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Liu, C.; Zheng, J.; Lin, R.; Song, L. Compressed sensing based virtual-detector photo-acoustic microscopy in vivo. J. Biomed. Opt. 2014, 19, 36003. [Google Scholar] [CrossRef] [PubMed]
- Jing-Jin, Z.; Ai-lin, L.; Qin-lao, Y.; Fang-ke, Z.; Bao-ping, G. Design of a large-format high-resolution streak camera with a planar photocathode. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 953, 163076. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yang, Q.L.; Zong, F.K. Calculation and experimental verification of spatial resolution consistency on Petzval image plane of streak tube. Optik 2020, 208, 164443. [Google Scholar] [CrossRef]
- Liwei, Z. Electron Optics with Wide Beam Focusing; Beijing Institute of Technology Press: Beijing, China, 1993; pp. 110–116. [Google Scholar]
- Csorba, I.P. Modulation transfer function of image tube lenses. Appl. Opt. 1977, 16, 2647–2650. [Google Scholar] [CrossRef] [PubMed]
- Kecon, A.; Jiye, X.; Liwei, Z. Relativistic aberration theory for a combined electromagnetic focusing deflection systems possessing a spherical cathode. Optik 1987, 75, 112–120. [Google Scholar]
- Kecong, A.; Jiye, X.; Liwei, Z. Aberration theory for angularly and transversely large beams in electromagnetic focusing system with curved axes. Chin. J. Electron. 1991, 1, 1–7. [Google Scholar]
- Kecong, A.; Liwei, Z.; Jiye, X. On the aberration theory for wide and narrow electron beams in a combined electromagnetic focusing system possessing a spherical cathode. Optik 1987, 75, 101–108. [Google Scholar]
- Available online: http://www.princetoninstruments.com (accessed on 5 March 2023).
- Jing-jin, Z.; Ai-lin, L.; Bao-ping, G.; Qin-lao, Y.; Fang-ke, Z. Influence of geomagnetic field on the imaging performance of a streak tube. Nucl. Inst. Methods Phys. Res. A 2020, 950, 162808. [Google Scholar] [CrossRef]
Tube Length (mm) | Diameter (mm) | Magnification | Total Voltage (kV) | Length of Photocathode (mm) | Material of Photocathode | Length of Focus Scope (mm) |
---|---|---|---|---|---|---|
424 | 60 | –1.32 | 12 | 30 | Au | 225 |
478 | 60 | –1.62 | 12 | 30 | 279 |
Location | Object Point Height (mm) | Spatial Resolution (lp/mm) | 424 mm Tube Length | 478 mm Tube Length | ||
---|---|---|---|---|---|---|
Average Modulation Degree | Average Spot Diameter (µm) | Average Modulation Degree | Average Spot Diameter (µm) | |||
L6 | –15 | 10 | 0.4401 | 57.67 | 0.3641 | 64.00 |
L5 | –12.625 | 0.6669 | 40.52 | 0.5997 | 45.52 | |
L4 | –9.75 | 15 | 0.8111 | 19.42 | 0.5865 | 31.00 |
L3 | –6.58 | 0.6516 | 27.78 | 0.8041 | 19.82 | |
L2 | –3.42 | 0.4841 | 36.15 | 0.6827 | 26.22 | |
L1 | –0.25 | 0.3608 | 42.85 | 0.5599 | 32.32 | |
R1 | 0.25 | 0.3593 | 42.94 | 0.5538 | 32.63 | |
R2 | 3.42 | 0.4148 | 39.81 | 0.6125 | 29.72 | |
R3 | 6.58 | 0.5055 | 35.05 | 0.6962 | 25.54 | |
R4 | 9.75 | 0.6614 | 27.29 | 0.8094 | 19.52 | |
R5 | 12.625 | 10 | 0.9121 | 19.31 | 0.8532 | 25.37 |
R6 | 15 | 0.8680 | 23.95 | 0.7845 | 31.36 |
Location | Object Point Height (mm) | 424 mm Tube Length | 478 mm Tube Length | ||||
---|---|---|---|---|---|---|---|
70% | 80% | 90% | 70% | 80% | 90% | ||
L6 | –15 | –2.38 | –3.57 | –5.95 | –3.38 | –5.07 | –8.45 |
L5 | –12.625 | –1.32 | –1.98 | –3.29 | –1.98 | –2.97 | –4.94 |
L4 | –9.75 | 0.0036 | 0.0054 | 0.0090 | –0.89 | –1.30 | –2.17 |
L3 | –6.58 | 0.56 | 0.79 | 1.31 | 0.012 | 0.017 | 0.029 |
L2 | –3.42 | 1.05 | 1.57 | 2.62 | 0.50 | 0.75 | 1.26 |
WL1 | –0.25 | 1.47 | 2.20 | 3.67 | 0.97 | 1.46 | 2.43 |
R1 | 0.25 | 1.48 | 2.21 | 3.69 | 1.00 | 1.49 | 2.49 |
R2 | 3.42 | 1.28 | 1.92 | 3.20 | 0.77 | 1.16 | 1.93 |
R3 | 6.58 | 0.98 | 1.47 | 2.45 | 0.45 | 0.68 | 1.13 |
R4 | 9.75 | 0.49 | 0.74 | 1.24 | 0.01 | 0.017 | 0.029 |
R5 | 12.625 | 0.0036 | 0.0054 | 0.0089 | –0.44 | –0.65 | –1.09 |
R6 | 15 | –0.28 | –0.43 | –0.71 | –0.89 | –1.34 | –2.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Wang, Y.; Zong, F.; Niu, L.; Yang, Q.; Zhang, J. Experimental Study on Measuring Petzval Image Plane of Streak Tube with Single Image. Photonics 2023, 10, 297. https://doi.org/10.3390/photonics10030297
Cai H, Wang Y, Zong F, Niu L, Yang Q, Zhang J. Experimental Study on Measuring Petzval Image Plane of Streak Tube with Single Image. Photonics. 2023; 10(3):297. https://doi.org/10.3390/photonics10030297
Chicago/Turabian StyleCai, Houzhi, Yong Wang, Fangke Zong, Lihong Niu, Qinlao Yang, and Jingjin Zhang. 2023. "Experimental Study on Measuring Petzval Image Plane of Streak Tube with Single Image" Photonics 10, no. 3: 297. https://doi.org/10.3390/photonics10030297
APA StyleCai, H., Wang, Y., Zong, F., Niu, L., Yang, Q., & Zhang, J. (2023). Experimental Study on Measuring Petzval Image Plane of Streak Tube with Single Image. Photonics, 10(3), 297. https://doi.org/10.3390/photonics10030297