Simultaneous Manipulation of the Temporal and Spatial Behaviors of Nanosecond Laser Based on Hybrid Q-Switching
Abstract
:1. Introduction
2. Temporal–Spatial Rate Equation Model of Hybrid Q-Switched Laser
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, B.-R.; Yao, B.-Q.; Qian, C.-P.; Liu, G.-Y.; Chen, Y.; Wang, R.-X.; Dai, T.-Y.; Duan, X.-M. 231 W dual-end-pumped Ho:YAG MOPA system and its application to a mid-infrared ZGP OPO. Opt. Lett. 2018, 43, 5989. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Mi, S.; Yang, K.; Wei, D.; Li, J.; Yao, B.; Yang, C.; Dai, T.; Duan, X.; Tian, L. 161 W middle infrared ZnGeP MOPA system pumped by 300 W-class Ho:YAG MOPA system. Opt. Lett. 2021, 46, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.; Jambunathan, V.; David, S.P.; Mateos, X.; Šulc, J.; Smrž, M.; Mocek, T. Diode-pumped master oscillator power amplifier system based on cryogenically cooled Tm:Y2O3 transparent ceramics. Opt. Mater. Express 2021, 11, 1489–1496. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Garcıa-López, J.H.; Aboites, V.; Kir’yanov, A.V.; Damzen, M.; Minassian, A. High repetition rate Q-switching of high power Nd:YVO4 slab laser. Opt. Commun. 2003, 218, 155–160. [Google Scholar] [CrossRef]
- Pinto Robledo, V.J.; Lopez, G.; Espinosa, Y.M.; Pisarchik, A.N.; Jaimes Reátegui, R.; Aboites, V. Experimental study of the dynamics of a diode-pumped Nd: YVO4 laser under periodic modulation of losses. Rev. Mex. Física E 2012, 58, 150–155. [Google Scholar]
- Jiao, Y.; Ma, Y.; Li, Y. All-solid-state single-longitudinal-mode pulse Nd:YVO4 ring laser. Acta Sin. Quantum Opt. 2014, 20, 81–84. [Google Scholar] [CrossRef]
- Wu, W.; Li, X.; Yan, R.; Zhou, Y.; Ma, Y.; Fan, R.; Dong, Z.; Chen, D. 100 kHz, 3.1 ns, 1.89 J cavity-dumped burst-mode Nd:YAG MOPA laser. Opt. Express 2017, 25, 26875–26884. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, X.; Mei, F.; Chen, D.; Yan, R. 30 mJ, 1 kHz sub-nanosecond burst-mode Nd:YAG laser MOPA system. Opt. Express 2019, 27, 36129–36136. [Google Scholar] [CrossRef]
- Pan, L.; Geng, J.; Jiang, S. High power picosecond green and deep ultraviolet generations with an all-fiberized MOPA. Opt. Lett. 2022, 47, 5140–5143. [Google Scholar] [CrossRef]
- Yu, Y.-J.; Chen, X.-Y.; Wang, C.; Wu, C.-T.; Yu, M.; Jin, G.-Y. High repetition rate 880 nm diode-directly-pumped electro-optic Q-switched Nd:GdVO4 laser with a double-crystal RTP electro-optic modulator. Opt. Commun. 2013, 304, 39–42. [Google Scholar] [CrossRef]
- Ma, S.; Lu, D.; Yu, H.; Zhang, H.; Han, X.; Lu, Q.; Ma, C.; Wang, J. High repetition rates optically active langasite electro-optically Q-switched laser at 1.34 μm. Opt. Express 2017, 25, 24007–24014. [Google Scholar] [CrossRef]
- Shang, J.; Yang, J.; Hao, H.; Li, Q.; Zhang, L.; Sun, J. Compact low-voltage electro-optic Q-switch made of LiNbO3. Opt. Express 2020, 28, 22287–22296. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Lin, Y.; Gong, X.; Luo, Z.; Huang, Y. Stable passively Q-switched 1537 nm Er:Yb:Lu2Si2O7 pulse microlaser with peak output power higher than 10 kW at 1–2 kHz. Opt. Laser Technol. 2022, 155, 108392. [Google Scholar] [CrossRef]
- Cho, C.; Cheng, H.; Chang, Y.; Tang, C.; Chen, Y.-F. An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr4+:YAG crystal. Opt. Express 2015, 23, 8162–8169. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Kan, H.; Taira, T. >1 MW peak power single-mode high-brightness passively Q-switched Nd3+: YAG microchip laser. Opt. Express 2008, 16, 19891–19899. [Google Scholar] [CrossRef]
- Lin, Y.-N.; Fang, W.-T.; Gu, C.; Xu, L.-X. Wideband all-polarization-maintaining Yb-doped mode-locked fiber laser using a nonlinear optical loop mirror. Chin. Phys. Lett. 2016, 33, 43–45. [Google Scholar] [CrossRef]
- Kelleher, E.J.R.; Travers, J.C.; Sun, Z.; Rozhin, A.G.; Ferrari, A.C.; Popov, S.V.; Taylor, J.R. Nanosecond-pulse fiber lasers mode-locked with nanotubes. Appl. Phys. Lett. 2009, 95, 111108. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Xie, G.; Zhao, C.; Wen, S.; Yuan, P.; Qian, L. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett. 2016, 41, 56–59. [Google Scholar] [CrossRef]
- Wu, W.; Li, X.; Yan, R.; Chen, D.; Tang, S. Cavity-dumped burst-mode Nd:YAG laser master-oscillator power-amplifier system with a flat-top beam output realized by gain profile-controlled side pumping. Opt. Express 2022, 30, 20401–20414. [Google Scholar] [CrossRef] [PubMed]
- Kasinski, J.J.; Burnham, R.L. Near-diffraction-limited laser beam shaping with diamond-turned aspheric optics. Opt. Lett. 1997, 22, 1062–1064. [Google Scholar] [CrossRef]
- Xue, L.; Pang, Y.; Liu, W.; Liu, L.; Pang, H.; Cao, A.; Shi, L.; Fu, Y.; Deng, Q. Fabrication of random microlens array for laser beam homogenization with high efficiency. Micromachines 2020, 11, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wippermann, F.; Zeitner, U.-D.; Dannberg, P.; Bräuer, A.; Sinzinger, S. Beam homogenizers based on chirped microlens arrays. Opt. Express 2007, 15, 6218–6231. [Google Scholar] [CrossRef]
- Reddy, A.N.K.; Pal, V. Robust design of diffractive optical elements for forming fat-top beams with extended depth of focus. Appl. Phy. B 2019, 125, 231. [Google Scholar] [CrossRef]
- Dev, V.; Reddy, A.N.K.; Pal, V. Generation of uniform-intensity light beams with controllable spatial shapes. Opt. Commun. 2020, 475, 126226. [Google Scholar] [CrossRef]
- Caley, A.J.; Thomson, M.J.; Liu, J.; Waddie, A.J.; Taghizadeh, M.R. Diffractive optical elements for high gain lasers with arbitrary output beam profiles. Opt. Express 2007, 15, 10699–10704. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Zhao, S.; Li, G.; Zou, J.; Song, P.; Wu, W. Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber. Appl. Phy. B 2005, 80, 687–692. [Google Scholar] [CrossRef]
- Li, D.; Zhao, S.; Li, G.; Yang, K. Optimization of pulse width of double passively Q-switched lasers with GaAs and Cr4+-doped saturable absorbers. Opt. Laser Technol. 2009, 41, 272–279. [Google Scholar] [CrossRef]
- Li, G.; Zhao, S.; Yang, K.; Li, D.; Zou, J. Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs. Opt. Express 2005, 13, 1178–1187. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, J.; Li, G.; Yang, K.; Sun, Y.; Li, D.; An, J.; Wang, J.; Li, M. Doubly Q-switched laser with electric-optic modulator and GaAs saturable absorber. Laser Phys. Lett. 2006, 3, 471–473. [Google Scholar] [CrossRef]
- Jin, D.; Bai, Z.; Wang, Q.; Chen, Y.; Liu, Z.; Fan, R.; Qi, Y.; Ding, J.; Yang, X.; Wang, Y. Doubly Q-switched single longitudinal mode Nd: YAG laser with electro-optical modulator and Cr4+: YAG. Opt. Commun. 2020, 463, 125500. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Lee, L.; Huang, T.; Wang, C. Study of high-power diode-end-pumped Nd:YVO4 laser at 1.34 μm: Influence of Auger upconversion. Opt. Commun. 1999, 163, 198–202. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.K.; George, J.; Sharma, S.; Ranganathan, K.; Nathan, T. Experimental determination of effective stimulated emission cross-section in a diode pumped Nd:YVO4 micro-laser at 1064 nm with various doping concentrations. Opt. Laser Technol. 2002, 34, 357–362. [Google Scholar] [CrossRef]
- Turri, G.; Jenssen, H.P.; Cornacchia, F.; Tonelli, M.; Bass, M. Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals. J. Opt. Soc. Am. B 2009, 26, 2084–2088. [Google Scholar] [CrossRef]
- Zhao, X.; Song, Z.; Li, Y.-J.; Feng, J.-X.; Zhang, K.-S. High efficiency sub-nanosecond electro–optical Q-switched laser operating at kilohertz repetition frequency. Chin. Phys. B 2020, 29, 335–340. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
l | 3 mm | ωg | 230 μm |
Lc,eff | 120 mm | ωsa | 2.5 mm |
lsa,0 | 2 mm | ωp | 250 μm |
Rsa | 5.5 mm | δ0 | 0.01 |
RSsa | 5.5 mm | Tp | 260 μs |
Ns0 | 3.5 × 10−23 m−3 | Pp | 15 W |
hνp | 2.4616 × 10−19 J | tqr | 4 ns |
σg | 4.3 × 10−22 m2 | tqs | 160 ns |
σe | 8.2 × 10−23 m2 | R | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Li, Y.; Wang, W.; Feng, J.; Zhang, K. Simultaneous Manipulation of the Temporal and Spatial Behaviors of Nanosecond Laser Based on Hybrid Q-Switching. Photonics 2023, 10, 227. https://doi.org/10.3390/photonics10020227
Yang H, Li Y, Wang W, Feng J, Zhang K. Simultaneous Manipulation of the Temporal and Spatial Behaviors of Nanosecond Laser Based on Hybrid Q-Switching. Photonics. 2023; 10(2):227. https://doi.org/10.3390/photonics10020227
Chicago/Turabian StyleYang, Haoxi, Yuanji Li, Wenrong Wang, Jinxia Feng, and Kuanshou Zhang. 2023. "Simultaneous Manipulation of the Temporal and Spatial Behaviors of Nanosecond Laser Based on Hybrid Q-Switching" Photonics 10, no. 2: 227. https://doi.org/10.3390/photonics10020227
APA StyleYang, H., Li, Y., Wang, W., Feng, J., & Zhang, K. (2023). Simultaneous Manipulation of the Temporal and Spatial Behaviors of Nanosecond Laser Based on Hybrid Q-Switching. Photonics, 10(2), 227. https://doi.org/10.3390/photonics10020227