Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface
Abstract
1. Introduction
2. Structure and Principle
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.-X.; Zhou Fang Wan, Y.-L.; Ning, H.-S. A Survey of Metaverse Technology. Chin. J. Eng. 2022, 44, 744–756. [Google Scholar]
- Geng, J. Structured-Light 3d Surface Imaging: A Tutorial. Adv. Opt. Photonics 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Ganapathi, V.; Plagemann, C.; Koller, D.; Thrun, S. Real Time Motion Capture Using a Single Time-of-Flight Camera. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 755–762. [Google Scholar]
- Guo, J.; Gu, F.; Ye, Y.; Song, Z. A Speckle 3d Reconstruction System Based on Binocular Endoscope. J. Integr. Technol. 2021, 11, 13–26. [Google Scholar]
- Wu, R.; Zhao, S.; Zhao, Y.; Xie, F. Fringe Projection Profilometry for 3d Measurement of Objects with Different Depth of Fields. Infrared Laser Eng. 2022, 51, 20220088. [Google Scholar]
- Li, Y.; Qian, J.; Feng, S.; Chen, Q.; Zuo, C. Deep-Learning-Enabled Dual-Frequency Composite Fringe Projection Profilometry for Single-Shot Absolute 3d Shape Measurement. Opto-Electron. Adv. 2022, 5, 210021. [Google Scholar] [CrossRef]
- Li, S.; Han, L.; Dong, P.; Sun, W. Algorithm for Measuring the Outer Contour Dimension of Trucks Using Uav Binocular Stereo Vision. Sustainability 2022, 14, 14978. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit Detection and Positioning Technology for a Camellia Oleifera C. Abel Orchard Based on Improved Yolov4-Tiny Model and Binocular Stereo Vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Chen, H.T.; Taylor, A.; Yu, N. A Review of Metasurfaces: Physics and Applications. Rep. Prog. Phys. 2016, 764, 7901. [Google Scholar] [CrossRef]
- Cai, T.; Wang, G.; Tang, S.; Xu, H.; Duan, J.; Guo, H.; Guan, F.; Sun, S.; He, Q.; Zhou, L. High-Efficiency and Full-Space Manipulation of Electromagnetic Wave Fronts with Metasurfaces. Phys. Rev. Appl. 2017, 8, 034033. [Google Scholar] [CrossRef]
- Hisao, K.; Toyota, H.; Yu, W. Optical Elements with Subwavelength Structured Surfaces. Opt. Rev. 2003, 10, 63–73. [Google Scholar]
- Li, Z.; Zheng, G.; He, P.; Li, S.; Deng, Q.; Zhao, J.; Ai, Y. All-Silicon Nanorod-Based Dammann Gratings. Opt. Lett. 2015, 4285, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, C.; Liu, T.; Da, H.; Feng, R.; Tang, D.; Sun, F.; Ding, W. Simple and Polarization-Independent Dammann Grating Based on All-Dielectric Nanorod Array. J. Opt. 2017, 19, 095103. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; He, T.; Cui, Y.; Tao, J.; Li, Z.; Zheng, G. Metasurface Fan-out Diffractive Optical Elements. J. Appl. Opt. 2019, 40, 306. [Google Scholar]
- Ni, Y.; Chen, S.; Wang, Y.; Tan, Q.; Xiao, S.; Yang, Y. Metasurface for Structured Light Projection over 120 Degrees Field of View. Nano Lett. 2020, 6719, 20–24. [Google Scholar]
- Zheng, X.; Yang, J.; Wang, R.; Lan, T. Visible Light Waveband Dammann Grating Based on All-Dielectric Metasurface. Appl. Opt. 2022, 2184, 61–91. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, W.; Sun, P.; Jin, G.; Li, J.; Xie, Y.; Zhou, C.; Jia, W. Equilateral Triangle Hexagonal Array by Crossing Two One-Dimensional Dammann Gratings with 60°. Microw. Opt. Technol. Lett. 2021, 2297, 63–302. [Google Scholar] [CrossRef]
- Li, Z.; Dai, Q.; Mehmood, M.; Hu, G.; Yanchuk, B.; Tao, J.; Hao, C.; Kim, I.; Jeong, H.; Zheng, G.; et al. Full-Space Cloud of Random Points with a Scrambling Metasurface. Light Sci. Appl. 2018, 7, 63. [Google Scholar] [CrossRef]
- Song, X.; Huang, L.; Tang, C.; Li, J.; Li, X.; Liu, J.; Wang, Y.; Zentgraf, T. Selective Diffraction with Complex Amplitude Modulation by Dielectric Metasurfaces. Adv. Opt. Mater. 2018, 6, 1701181. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Song, X.; Zhao, R.; Jia, D.; Liu, T. Tunable Multi-Wavelength Optofluidic Dammann Grating with Beam Splitting Property. Opt. Express. 2021, 29, 33414–33423. [Google Scholar] [CrossRef]
- Carletti, L.; Zilli, A.; Moia, F.; Toma, A.; Finazzi, M.; De Angelis, C.; Neshev, D.; Celebrano, M. Steering and Encoding the Polarization of the Second Harmonic in the Visible with a Monolithic Linbo(3) Metasurface. ACS Photonics 2021, 8, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Bartal, G.; Cohen, O.; Buljan, H.; Fleischer, J.; Manela, O.; Segev, M. Brillouin-Zone Spectroscopy of Nonlinear Photonic Lattices. In Proceedings of the 2005 Quantum Electronics and Laser Science Conference, Baltimore, MD, USA, 22–27 May 2005. [Google Scholar]
- Jin, W.; Yan, L.X.; Jiang, D. Area Scalable Optically Induced Photorefractive Photonic Microstructures. Opt. Mater. 2016, 57, 174–178. [Google Scholar] [CrossRef]
- Xavier, J.; Boguslawski, M.; Rose, P.; Joseph, J.; Denz, C. Reconfigurable Optically Induced Quasicrystallographic Three-Dimensional Complex Nonlinear Photonic Lattice Structures. Adv. Mater. 2010, 22, 356–360. [Google Scholar] [CrossRef]
- Xia, S.; Jukic, D.; Wang, N.; Smirnova, D.; Smirnov, L.; Tang, L.; Song, D.; Szameit, A.; Leykam, D.; Xu, J.; et al. Nontrivial Coupling of Light into a Defect: The Interplay of Nonlinearity and Topology. Light Sci. Appl. 2020, 9, 147. [Google Scholar] [CrossRef]
- Sun, K.; Tan, D.; Fang, X.; Xia, X.; Lin, D.; Song, J.; Lin, Y.; Liu, Z.; Gu, M.; Yue, Y.; et al. Three-Dimensional Direct Lithography of Stable Perovskite Nanocrystals in Glass. Science 2022, 375, 307–310. [Google Scholar] [CrossRef]
- Shi, Z.; Li, H.; Zhu, X. Necklacelike Solitons Formed by Manipulating Vortex Beams in a Synthetic Structure. J. Opt. Soc. Am. B 2019, 36, 2007–2012. [Google Scholar] [CrossRef]
- Shi, Z.; Preece, D.; Zhang, C.; Xiang, Y.; Chen, Z. Generation and Probing of 3d Helical Lattices with Tunable Helix Pitch and Interface. Opt. Express. 2019, 27, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, K.; Cui, Y.; Zhong, J.; Zhang, H.; Jiang, Y.; Zhao, W. Design and Simulation of a Gst-Based Metasurface with Strong and Switchable Circular Dichroism. Opt. Lett. 2022, 47, 1907–1910. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, W.; Huang, J.; Zhang, H.; Zhao, W. Active Metasurface in the near-Infrared Region by Gating Ultrathin Tin Films. Opt. Lett. 2022, 5072, 47–75. [Google Scholar] [CrossRef]
- Zhang, D.; Ren, M.; Wu, W.; Gao, N.; Yu, X.; Cai, W.; Zhang, X.; Xu, J. Nanoscale Beam Splitters Based on Gradient Metasurfaces. Opt. Lett. 2018, 43, 267–270. [Google Scholar] [CrossRef]
- Gao, B.; Ren, M.; Wu, W.; Hu, H.; Cai, W.; Xu, J. Lithium Niobate Metasurfaces. Laser Photonics Rev. 2019, 13, 1800312. [Google Scholar] [CrossRef]
- Ma, J.; Xie, F.; Chen, W.; Chen, J.; Wu, W.; Liu, W.; Chen, Y.; Cai, W.; Ren, M.; Xu, J. Nonlinear Lithium Niobate Metasurfaces for Second Harmonic Generation. Laser Photonics Rev. 2021, 15, 2000521. [Google Scholar] [CrossRef]
- Fedotova, A.; Younesi, M.; Sautter, J.; Vaskin, A.; Lochner, F.; Steinert, M.; Geiss, R.; Pertsch, T.; Staude, I.; Setzpfandt, F. Second-Harmonic Generation in Resonant Nonlinear Metasurfaces Based on Lithium Niobate. Nano Lett. 2020, 20, 8608–8614. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Li, H.; Zhu, S.; Li, T. Second-Harmonic Generation and Manipulation in Lithium Niobate Slab Waveguides by Grating Metasurfaces. Photonics Res. 2020, 8, 1296–1300. [Google Scholar] [CrossRef]
- Bartal, G.; Cohen, O.; Buljan, H.; Fleischer, J.; Manela, O.; Segev, M. Brillouin Zone Spectroscopy of Nonlinear Photonic Lattices. Phys. Rev. Lett. 2005, 1639, 9402. [Google Scholar]
- Wu, X.; Hao, Z.; Bo, F.; Zhang, G.; Xu, J. Advances in Second-Order Nonlinear Optical Effects of Lithium Niobate Micro/Nano Waveguides. Chin. Sci. Bull. 2022, 67, 3915–3927. [Google Scholar]
- Jin, G. Binary Optics. Phys. Eng. 2000, 5, 2–5+16. [Google Scholar]
- Moreno, I.; Davis, J.; Cottrell, D.; Zhang, N.; Yuan, X.C. Encoding Generalized Phase Functions on Dammann Gratings. Opt. Lett. 2010, 1536, 35–38. [Google Scholar] [CrossRef]
- Dammann, H.; Klotz, E. Coherent Optical Generation and Inspection of Two-Dimensional Periodic Structures. Opt. Acta Int. J. Opt. 2010, 24, 505–515. [Google Scholar] [CrossRef]
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 1866, 124–178. [Google Scholar] [CrossRef]
Paper | Work Band | Conversion Efficiency | Contrast Ratio | Diffraction Angle |
---|---|---|---|---|
This study | 480–510 nm, 950–1020 nm | >50%, >60% | 40% | 44° × 44° |
[13] | 1530–1565 nm | 50–52% | 4.67% | 59° × 59° |
[14] | 1550 nm | 41.4% | 50% | 18° × 18° |
[15] | 633 nm | NA | 24.3% | 32° × 32° |
[16] | 1550 nm | 59.1% | 38.68% | 120° × 120° |
[17] | 650–690 nm | >60% | <33% | 20° × 20° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Shi, Z.; Jiang, H.; Deng, Y. Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface. Photonics 2023, 10, 141. https://doi.org/10.3390/photonics10020141
Wu Y, Shi Z, Jiang H, Deng Y. Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface. Photonics. 2023; 10(2):141. https://doi.org/10.3390/photonics10020141
Chicago/Turabian StyleWu, Yuning, Zhiwei Shi, Huan Jiang, and Yaohua Deng. 2023. "Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface" Photonics 10, no. 2: 141. https://doi.org/10.3390/photonics10020141
APA StyleWu, Y., Shi, Z., Jiang, H., & Deng, Y. (2023). Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface. Photonics, 10(2), 141. https://doi.org/10.3390/photonics10020141