Photonic Hook Initiated Using an Air–Liquid Interface
Abstract
:1. Introduction
2. Modelling
3. Results and Discussion
3.1. Electric Field Intensities
3.2. Poynting Vector Flows
3.3. Optical Forces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heifetz, A.; Kong, S.C.; Sahakian, A.V.; Taflove, A.; Backman, V. Photonic Nanojets. J. Comput. Theor. Nanosci. 2009, 6, 1979–1992. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Taflove, A.; Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 2004, 12, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Luk’yanchuk, B.S.; Paniagua-Domínguez, R.; Minin, I.V.; Minin, O.V.; Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow. Opt. Mater. Express 2017, 7, 1820–1847. [Google Scholar] [CrossRef]
- Bachynski, M.P.; Bekefi, G. Study of Optical Diffraction Images at Microwave Frequencies. J. Opt. Soc. Am. 1957, 47, 428–438. [Google Scholar] [CrossRef]
- Stamnes, J. Waves in Focal Regions, Chapter 10.3 Focusing with First–Order Cylindrical Aberrations; CRC Press: New York, NY, USA, 1986. [Google Scholar]
- Darafsheh, A. Photonic nanojets and their applications. J. Phys. Photonics 2021, 3, 022001. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V. Diffractive Optics and Nanophotonics: Resolution below the Diffraction Limit; Springer: Berlin, Germany, 2016. [Google Scholar]
- Yue, L.; Minin, O.V.; Wang, Z.; Monks, J.N.; Minin, I.V. Photonic hook: A new curved light beam. Opt. Lett. 2018, 43, 771–774. [Google Scholar] [CrossRef]
- Minin, O.V.; Minin, I.V. The Photonic Hook: From Optics to Acoustics and Plasmonics; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- Dholakia, K.; Bruce, G.D. Optical hooks. Nat. Photonics 2019, 13, 229–230. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V. Recent trends in optical manipulation inspired by mesoscale photonics and diffraction optics. J. Biomed. Photonics Eng. 2020, 6, 020301. [Google Scholar] [CrossRef]
- Gu, G.; Shao, L.; Song, J.; Qu, J.; Zheng, K.; Shen, X.; Peng, Z.; Hu, J.; Chen, X.; Chen, M.; et al. Photonic Hooks Janus Microcylinders. Opt. Express 2019, 27, 37771–37780. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Liu, C.; Wei, H.; Geints, Y.; Karacevsky, A. Experimental demonstration of a tunable photonic hook by a partially illuminated dielectric microcylinder. Opt. Lett. 2020, 45, 4899–4902. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Liu, Y.; Tuchin, V.V.; Liu, C. Concept of photonic hook scalpel generated by shaped fiber tip with asymmetric radiation. J. Biophotonics 2021, 14, e202000342. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.M. Chapter 1—Molecular Perspective of Gas–Liquid Interfaces: What Can Be Learned from Theoretical Simulations? In Developments in Physical & Theoretical Chemistry, Physical Chemistry of Gas-Liquid Interfaces; Faust, J.A., House, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–40. [Google Scholar]
- George, C.; Brüggemann, M.; Hayeck, N.; Tinel, L.; Donaldson, J. Chapter 14—Interfacial Photochemistry. In Developments in Physical & Theoretical Chemistry, Physical Chemistry of Gas-Liquid Interfaces; Faust, J.A., House, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 435–457. [Google Scholar]
- Jesacher, A.; Fürhapter, S.; Maurer, C.; Bernet, S.; Ritsch-Marte, M. Holographic optical tweezers for object manipulations at an air-liquid surface. Opt. Express 2006, 14, 6342–6352. [Google Scholar] [CrossRef]
- Dasgupta, R.; Ahlawat, S.; Gupta, P.K. Trapping of micron-sized objects at a liquid–air interface. J. Opt. A Pure Appl. Opt. 2017, 9, S189. [Google Scholar] [CrossRef]
- Girot, A.; Danné, N.; Würger, A.; Bickel, T.; Ren, K.F.; Loudet, J.C.; Pouligny, B. Motion of Optically Heated Spheres at the Water–Air Interface. Langmuir 2016, 32, 2687–2697. [Google Scholar] [CrossRef] [PubMed]
- Minin, I.V.; Minin, O.V. Optical Phenomena in Mesoscale Dielectric Particles. Photonics 2021, 8, 591. [Google Scholar] [CrossRef]
- Neuman, K.C.; Block, S.M. Optical trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809. [Google Scholar] [CrossRef]
- Xie, C.; Mace, J.; Dinno, M.A.; Li, Y.Q.; Tang, W.; Newton, R.J.; Gemperline, P.J. Identification of Single Bacterial Cells in Aqueous Solution Using Confocal Laser Tweezers Raman Spectroscopy. Anal. Chem. 2005, 77, 4390–4397. [Google Scholar] [CrossRef]
- Fuhr, G.; Müller, T.; Schnelle, T.; Hagedorn, R.; Voigt, A.; Fiedler, S.; Arnold, W.M.; Zimmermann, U.; Wagner, B.; Heuberger, A. Radio-frequency microtools for particle and liver cell manipulation. Die Naturwissenschaften 1994, 81, 528–535. [Google Scholar] [CrossRef]
- Casabella, S.; Scully, P.; Goddard, N.; Gardner, P. Automated analysis of single cells using Laser Tweezers Raman Spectroscopy. Analyst 2016, 141, 689–696. [Google Scholar] [CrossRef]
- Zhang, P.; Kong, L.; Setlow, P.; Li, Y. Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells. Opt. Lett. 2010, 35, 3321–3323. [Google Scholar] [CrossRef]
- Zhong, M.; Wang, X.; Zhou, J.; Wang, Z.; Li, Y. Optimal beam diameter for lateral optical forces on microspheres at a water-air interface. Chin. Opt. Lett. 2014, 12, 011403. [Google Scholar] [CrossRef]
- Liberale, C.; Minzioni, P.; Bragheri, F.; De Angelis, F.; Di Fabrizio, E.; Cristiani, I. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat. Photon. 2007, 1, 723–727. [Google Scholar] [CrossRef]
- Xin, H.; Li, B. Fiber-based optical trapping and manipulation. Front. Optoelectron. 2019, 12, 97–110. [Google Scholar] [CrossRef]
- Gao, B.; Zhong, H.; Yan, B.; Yue, L.; Dang, Y.; Chen, P.; Jiang, C.; Wang, Z. Combined single/dual fiber optical trapping for flexible particle manipulation. Opt. Lasers Eng. 2023, 161, 107373. [Google Scholar] [CrossRef]
- Lou, Y.; Wu, D.; Pang, Y. Optical Trapping and Manipulation Using Optical Fibers. Adv. Fiber Mater. 2019, 1, 83–100. [Google Scholar] [CrossRef]
- Soifer, V.A. Diffractive Optics and Nanophotonics; Taylor & Francis Group: Abingdon, UK, 2014. [Google Scholar]
- Yu, J.; Xu, Y.; Lin, S.; Zhu, X.; Gbur, G.; Cai, Y. Longitudinal optical trapping and manipulating Rayleigh particles by spatial nonuniform coherence engineering. Phys. Rev. A 2022, 106, 033511. [Google Scholar] [CrossRef]
- Brunetti, G.; Sasanelli, N.; Armenise, M.N.; Ciminelli, C. Nanoscale Optical Trapping by Means of Dielectric Bowtie. Photonics 2022, 9, 425. [Google Scholar] [CrossRef]
- Liang, Y.; Su, Y.; Li, J.; Yang, C. Optical trapping of Rayleigh particles based on four-petal Gaussian vortex beams. J. Opt. Soc. Am. A 2022, 39, 1378–1384. [Google Scholar] [CrossRef]
- Park, B.J.; Furst, E.M. Optical Trapping Forces for Colloids at the Oil−Water Interface. Langmuir 2008, 24, 13383–13392. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, B. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light Sci. Appl. 2019, 8, 61. [Google Scholar] [CrossRef]
- Blázquez-Castro, A. Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules. Micromachines 2019, 10, 507. [Google Scholar] [CrossRef] [PubMed]
- Schott Glass Data Sheets. Available online: https://www.schott.com/shop/advanced-optics/en/Optical-Glass/N-SK4/c/glass-N-SK4 (accessed on 5 April 2023).
- Hoang, V.T.; Stępniewski, G.; Czarnecka, K.H.; Kasztelanic, R.; Long, V.C.; Xuan, K.D.; Shao, L.; Śmietana, M.; Buczyński, R. Optical Properties of Buffers and Cell Culture Media for Optofluidic and Sensing Applications. Appl. Sci. 2019, 9, 1145. [Google Scholar] [CrossRef]
- Haslett, C.J. Essentials of Radio Wave Propagation; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Cheng, D.K. Field and Wave Electromagnetics, 2nd ed.; Addison-Wesley: New York, NY, USA, 1989. [Google Scholar]
- CST Studio Suite Help Document, Frequency Domain Solver Overview and Settings. Available online: https://space.mit.edu/RADIO/CST_online/cst_studio_suite_help.htm (accessed on 28 July 2023).
- Kemp, B.A.; Grzegorczyk, T.M.; Kong, J.A. Ab initio study of the radiation pressure on dielectric and magnetic media. Opt. Express 2005, 13, 9280–9291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qiu, J.; Li, X.; Zhao, J.; Liu, L. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 2020, 59, 2337–2344. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Vettenburg, T.; Dalgarno, H.C.; Nylk, J.; Coll-Llado, C.; Ferrier, D.E.K.; Cizmar, T.; Gunn-Moore, F.J.; Dholakia, K. Light-sheet microscopy using an Airy beam. Nat. Methods 2014, 11, 541–544. [Google Scholar] [CrossRef]
- Yue, L.; Wang, Z.; Yan, B.; Xie, Y.; Geints, Y.E.; Minin, O.V.; Minin, I.V. Near-Field Light-Bending Photonic Switch: Physics of Switching Based on Three-Dimensional Poynting Vector Analysis. Photonics 2022, 9, 154. [Google Scholar] [CrossRef]
- Kundu, A.; Paul, S.; Banerjee, S.; Banerjee, A. Measurement of Van der Waals force using oscillating optical tweezers. Appl. Phys. Lett. 2019, 115, 123701. [Google Scholar] [CrossRef]
- Jia, Q.; Lyu, W.; Yan, W.; Tang, W.; Lu, J.; Qiu, M. Optical manipulation: From fluid to solid domains. Photonics Insights 2023, 2, R05. [Google Scholar] [CrossRef]
- He, R.; Teng, C.; Kumar, S.; Marques, C.; Min, R. Polymer Optical Fiber Liquid Level Sensor: A Review. IEEE Sens. J. 2022, 22, 1081–1091. [Google Scholar] [CrossRef]
- Baker, J.; Ryan, J.E.; Badman, P.; Wang, M.D. Nanophotonic trapping: Precise manipulation and measurement of biomolecular arrays. WIREs Nanomed. Nanobiotechnol. 2018, 10, e1477. [Google Scholar] [CrossRef]
Thickness (µm) | FWHMs (µm) | DLs (µm) | Percentage Decrease |
---|---|---|---|
1.5 | 0.360 | 0.532–λ/2n0 | −32.33% |
2.1 | 0.318 | 0.532–λ/2n0 | −40.23% |
2.5 | 0.369 | 0.532–λ/2n0 | −30.64% |
0.400–λ/2n2 | −7.75% | ||
2.7 | 0.310 | 0.400–λ/2n2 | −22.50% |
2.9 | 0.343 | 0.400–λ/2n2 | −14.25% |
3.1 | 0.366 | 0.400–λ/2n2 | −8.50% |
3.3 | 0.359 | 0.400–λ/2n2 | −10.25% |
3.7 | 0.362 | 0.400–λ/2n2 | −9.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, L.; Yan, B.; Wang, Z.; Minin, O.V.; Minin, I.V. Photonic Hook Initiated Using an Air–Liquid Interface. Photonics 2023, 10, 1175. https://doi.org/10.3390/photonics10101175
Yue L, Yan B, Wang Z, Minin OV, Minin IV. Photonic Hook Initiated Using an Air–Liquid Interface. Photonics. 2023; 10(10):1175. https://doi.org/10.3390/photonics10101175
Chicago/Turabian StyleYue, Liyang, Bing Yan, Zengbo Wang, Oleg V. Minin, and Igor V. Minin. 2023. "Photonic Hook Initiated Using an Air–Liquid Interface" Photonics 10, no. 10: 1175. https://doi.org/10.3390/photonics10101175
APA StyleYue, L., Yan, B., Wang, Z., Minin, O. V., & Minin, I. V. (2023). Photonic Hook Initiated Using an Air–Liquid Interface. Photonics, 10(10), 1175. https://doi.org/10.3390/photonics10101175