Electron Paramagnetic Resonance Sensing of «Hidden» Atomistic and Cooperative Defects in Femtosecond Laser-Inscribed Photoluminescent Encoding Patterns in Diamond
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. FT-IR Measurements
3.2. EPR Measurements
3.3. PL Measurements
3.4. Graphitization
3.5. Laser-Induced Structural Transformations of Color Centers in the Diamond
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schein, J.; Campbell, K.M.; Prasad, R.R.; Binder, R.; Krishnan, M. Radiation hard diamond laser beam profiler with subnanosecond temporal resolution. Rev. Sci. Instrum. 2002, 73, 18–22. [Google Scholar] [CrossRef]
- Bergonzo, P.; Tromson, D.; Mer, C. Radiation detection devices made from CVD diamond. Semicond. Sci. Technol. 2003, 18, S105–S112. [Google Scholar] [CrossRef]
- Feldman, A. Diamond optics. In CRC Handbook of Laser Science and Technology Supplement 2; CRC Press: Boca Raton, FL, USA, 2020; pp. 581–591. [Google Scholar]
- Gao, S.; Tian, Z.-N.; Yu, P.; Sun, H.-Y.; Fan, H.; Chen, Q.-D.; Sun, H.-B. Deep diamond single-photon sources prepared by femtosecond laser. Opt. Lett. 2021, 46, 4386–4389. [Google Scholar] [PubMed]
- Humble, P. The structure and mechanism of formation of platelets in natural type Ia diamond. Proc. R. Soc. Lond. A Math. Phys. Sci. 1982, 381, 65–81. [Google Scholar]
- Hirsch, P.B.; Pirouz, P.; Barry, J.C. Platelets, dislocation loops and voidites in diamond. Proc. R. Soc. Lond. A Math. Phys. Sci. 1986, 407, 239–258. [Google Scholar]
- Evans, T.; Kiflawi, I.; Luyten, W.; Tendeloo, G.; Woods, G.S. Conversion of platelets into dislocation loops and voidite formation in type IaB diamonds. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1995, 449, 295–313. [Google Scholar]
- Coomer, B.J.; Goss, J.P.; Jones, R.; Oberg, S.; Briddon, P.R. Identification of the tetra-interstitial in silicon. J. Phys. Condens. Matter 2001, 13, L1–L7. [Google Scholar] [CrossRef]
- Goss, J.P.; Coomer, B.J.; Jones, R.; Fall, C.J.; Briddon, P.R.; Oberg, S. Extended defects in diamond: The interstitial platelet. Phys. Rev. B 2003, 67, 165208–165215. [Google Scholar]
- Speich, L.; Kohn, S.; Wirth, R.; Bulanova, G.; Smith, C. The relationship between platelet size and the B′ infrared peak of natural diamonds revisited. Lithos 2017, 278–281, 419–426. [Google Scholar]
- Ashfold, M.N.R.; Goss, J.P.; Green, B.L.; May, P.W.; Newton, M.E.; Peaker, C.V. Nitrogen in diamond. Chem. Rev. 2020, 120, 5745–5794. [Google Scholar]
- Prawer, S.; Devir, A.D.; Balfour, L.S.; Kalish, R. Infrared emission from selected areas in ion-beam-irradiated diamond. Appl. Opt. 1995, 34, 636–640. [Google Scholar] [CrossRef]
- Green, B.L.; Collins, A.T.; Breeding, C.M. Diamond spectroscopy, defect centers, color, and treatments. Rev. Mineral. Geochem. 2022, 88, 637–688. [Google Scholar]
- Collins, A.T.; Dahwich, A. The production of vacancies in type Ib diamond. J. Phys. Condens. Matter 2003, 15, L591–L596. [Google Scholar] [CrossRef]
- Iakoubovskii, K.; Adriaenssens, G.J.; Dogadkin, N.N.; Shiryaev, A.A. Optical characterization of some irradiation-induced centers in diamond. Diam. Relat. Mater. 2001, 10, 18–26. [Google Scholar]
- Iakoubovskii, K.; Kiflawi, I.; Johnston, K.; Collins, A.; Davies, G.; Stesmans, A. Annealing of vacancies and interstitials in diamond. Physica B 2003, 340–342, 67–75. [Google Scholar] [CrossRef]
- Kirui, J.K.; van Wyk, J.A.; Hoch, M.J.R. ESR studies of the negative divacancy in irradiated type-I diamonds. Diam. Relat. Mater. 1999, 8, 1569–1571. [Google Scholar] [CrossRef]
- Nadolinniy, V.A.; Sobolev, E.V.; Yurieva, O.P. New data on the structure of the R1 and R2 radiation centers in diamond. J. Struct. Chem. 1995, 36, 626–631. [Google Scholar] [CrossRef]
- Twitchen, D.J.; Newton, M.E.; Baker, J.M.; Tucker, O.D.; Anthony, T.R.; Banholzer, W.F. Electron-paramagnetic-resonance measurements on the di-<001>-split interstitial center (R1) in diamond. Phys. Rev. B 1996, 54, 6988–6998. [Google Scholar]
- Twitchen, D.J.; Hunt, D.C.; Smart, V.; Newton, M.E.; Baker, J.M. Correlation between ND1 optical absorption and theconcentration of negative vacancies determined by electron paramagnetic resonance (EPR). Diam. Relat. Mater. 1999, 8, 1572–1575. [Google Scholar] [CrossRef]
- Chen, Y.C.; Salter, P.S.; Knauer, S.; Weng, L.; Frangeskou, A.C.; Stephen, C.J.; Ishmael, S.N.; Dolan, P.R.; Johnson, S.; Green, B.L.; et al. Laser writing of coherent colour centres in diamond. Nat. Photonics 2017, 11, 77–80. [Google Scholar]
- Jelezko, F.; Wrachtrup, J. Focus on diamond-based photonics and spintronics. New J. Phys. 2012, 14, 105024. [Google Scholar] [CrossRef]
- Kudryashov, S.; Danilov, P.; Smirnov, N.; Krasin, G.; Khmelnitskii, R.; Kovalchuk, O.; Kriulina, G.; Martovitskiy, V.; Lednev, V.; Sdvizhenskii, P.; et al. “Stealth Scripts”: Ultrashort Pulse Laser Luminescent Microscale Encoding of Bulk Diamonds via Ultrafast Multi-Scale Atomistic Structural Transformations. Nanomaterials 2023, 13, 192. [Google Scholar]
- Chen, Y.C.; Griffiths, B.; Weng, L.; Nicley, S.S.; Ishmael, S.N.; Lekhai, Y.; Johnson, S.; Stephen, C.J.; Green, B.L.; Morley, G.W.; et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica 2019, 6, 662–667. [Google Scholar] [CrossRef]
- Yurgens, V.; Zuber, J.A.; Flågan, S.; De Luca, M.; Shields, B.J.; Zardo, I.; Maletinsky, P.; Warburton, R.J.; Jakubczyk, T. Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens. ACS Photonics 2021, 8, 1726–1734. [Google Scholar] [CrossRef]
- Kempkes, M.; Zier, T.; Singer, K.; Garcia, M.E. Ultrafast nonthermal NV center formation in diamond. Carbon 2021, 174, 524–530. [Google Scholar] [CrossRef]
- Smirnova, M.O. Formation of nitrogen-vacancy centres in diamond: Tight-binding molecular dynamic simulation. J. Phys. Conf. Ser. 2020, 1435, 012069. [Google Scholar] [CrossRef]
- Griffiths, B.; Kirkpatrick, A.; Nicley, S.S.; Patel, R.L.; Zajac, J.M.; Morley, G.W.; Booth, M.J.; Salter, P.S.; Smith, J.M. Microscopic processes during ultrafast laser generation of Frenkel defects in diamond. Phys. Rev. B 2021, 104, 174303. [Google Scholar] [CrossRef]
- Lühmann, T.; Raatz, N.; John, R.; Lesik, M.; Rödiger, J.; Portail, M.; Wildanger, D.; Kleibler, F.; Nordlund, K.; Zaitsev, A.; et al. Screening and engineering of colour centres in diamond. J. Phys. D Appl. Phys. 2018, 51, 483002. [Google Scholar] [CrossRef]
- Kurita, T.; Shimotsuma, Y.; Fujiwara, M.; Fujie, M.; Mizuochi, N.; Shimizu, M.; Miura, K. Direct writing of high-density nitrogen-vacancy centers inside diamond by femtosecond laser irradiation. Appl. Phys. Lett. 2021, 118, 214001. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Vins, V.G.; Danilov, P.A.; Kuzmin, E.V.; Muratov, A.V.; Kriulina, G.Y.; Chen, J.; Kirichenko, A.N.; Gulina, Y.S.; Ostrikov, S.A.; et al. Permanent optical bleaching in HPHT-diamond via aggregation of C-and NV-centers excited by visible-range femtosecond laser pulses. Carbon 2023, 201, 399–407. [Google Scholar] [CrossRef]
- Kudryashov, S.; Kriulina, G.; Danilov, P.; Kuzmin, E.; Kirichenko, A.; Rodionov, N.; Khmelnitskii, R.; Chen, J.; Rimskaya, E.; Shur, V. Nanoscale Vacancy-Mediated Aggregation, Dissociation, and Splitting of Nitrogen Centers in Natural Diamond Excited by Visible-Range Femtosecond Laser Pulses. Nanomaterials 2023, 13, 258. [Google Scholar] [CrossRef]
- Danilov, P.; Kuzmin, E.; Rimskaya, E.; Chen, J.; Khmelnitskii, R.; Kirichenko, A.; Rodionov, N.; Kudryashov, S. Up/Down-Scaling Photoluminescent Micromarks Written in Diamond by Ultrashort Laser Pulses: Optical Photoluminescent and Structural Raman Imaging. Micromachines 2022, 13, 1883. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Inoue, S.; Masuno, S.I.; Fu, H.; Tokita, S.; Hashida, M.; Mizuochi, N. Creation of NV centers over a millimeter-sized region by intense single-shot ultrashort laser irradiation. APL Photonics 2023, 8, 036108. [Google Scholar]
- Speich, L.; Cohn, S.C. QUIDDIT—QUantification of Infrared active Defects in Diamond and Inferred Temperatures. Comput. Geosci. 2020, 144, 1045–1058. [Google Scholar] [CrossRef]
- Loubser, J.; Van Wyk, J.A. Electron spin resonance in the study of diamond. Rep. Prog. Phys. 1978, 41, 1201–1248. [Google Scholar] [CrossRef]
- Shcherbakova, M.Y.; Sobolev, E.V.; Nadolinny, V.A.; Aksenov, V.K. Defects in plastically deformed diamonds by optical and EPR spectra. Dokl. USSR Acad. Sci. 1975, 225, 566–569. (In Russian) [Google Scholar]
- Samsonenko, N.D.; Shulga, V.G.; Litvin, Y.A. Electronic paramagnetic resonance in natural and synthetic diamonds on defects of an unalloyed nature. Sinteticheskiealmazy 1970, 3, 22–26. (In Russian) [Google Scholar]
- Newton, M.E.; Baker, J.M. 14N ENDOR of the N2 center in diamond. J. Phys. Condens. Matter 1989, 1, 9801–9803. [Google Scholar] [CrossRef]
- Mineeva, R.M.; Titkov, S.V.; Speranskii, A.V. Structural defects in natural plastically deformed diamonds according to EPR spectroscopy data. Geol. Rudn. Mestorozhdenij 2009, 51, 261–271. (In Russian) [Google Scholar]
- Kudryashov, S.; Danilov, P.; Kuzmin, E.; Smirnov, N.; Gorevoy, A.; Vins, V.; Pomazkin, D.; Paholchuk, P.; Muratov, A.; Kirichenko, A.; et al. Productivity of Concentration-Dependent Conversion of Substitutional Nitrogen Atoms into Nitrogen-Vacancy Quantum Emitters in Synthetic-Diamond by Ultrashort Laser Pulses. Micromachines 2023, 14, 1397. [Google Scholar] [CrossRef]
- Collins, A.T. A spectroscopic survey of naturally-occurring vacancy-related colour centres in diamond. J. Phys. D Appl. Phys. 1982, 15, 1431–1438. [Google Scholar] [CrossRef]
- Crossfield, M.D.; Davies, G.; Collins, A.T.; Lightowlers, E.C. The role of defect interactions in reducing the decay time of H3 luminescence in diamond. J. Phys. C Solid State Phys. 1974, 7, 1909–1917. [Google Scholar] [CrossRef]
- Kononenko, T.V.; Ralchenko, V.G.; Vlasov, I.I.; Garnov, S.V.; Konov, V.I. Ablation of CVD diamond with nanosecond laser pulses of UV-IR range. Diam. Relat. Mater. 1998, 7, 1623–1627. [Google Scholar]
- Khmelnitsky, R.A.; Gippius, A.A. Transformation of diamond to graphite under heat treatment at low pressure. Phase Transit. 2014, 87, 175–192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vyatkin, S.; Danilov, P.; Smirnov, N.; Pomazkin, D.; Kuzmin, E.; Gorevoy, A.; Muratov, A.; Matyaev, I.; Kudryashov, S. Electron Paramagnetic Resonance Sensing of «Hidden» Atomistic and Cooperative Defects in Femtosecond Laser-Inscribed Photoluminescent Encoding Patterns in Diamond. Photonics 2023, 10, 979. https://doi.org/10.3390/photonics10090979
Vyatkin S, Danilov P, Smirnov N, Pomazkin D, Kuzmin E, Gorevoy A, Muratov A, Matyaev I, Kudryashov S. Electron Paramagnetic Resonance Sensing of «Hidden» Atomistic and Cooperative Defects in Femtosecond Laser-Inscribed Photoluminescent Encoding Patterns in Diamond. Photonics. 2023; 10(9):979. https://doi.org/10.3390/photonics10090979
Chicago/Turabian StyleVyatkin, Sergey, Pavel Danilov, Nikita Smirnov, Daniil Pomazkin, Evgeny Kuzmin, Alexey Gorevoy, Andrey Muratov, Ivan Matyaev, and Sergey Kudryashov. 2023. "Electron Paramagnetic Resonance Sensing of «Hidden» Atomistic and Cooperative Defects in Femtosecond Laser-Inscribed Photoluminescent Encoding Patterns in Diamond" Photonics 10, no. 9: 979. https://doi.org/10.3390/photonics10090979
APA StyleVyatkin, S., Danilov, P., Smirnov, N., Pomazkin, D., Kuzmin, E., Gorevoy, A., Muratov, A., Matyaev, I., & Kudryashov, S. (2023). Electron Paramagnetic Resonance Sensing of «Hidden» Atomistic and Cooperative Defects in Femtosecond Laser-Inscribed Photoluminescent Encoding Patterns in Diamond. Photonics, 10(9), 979. https://doi.org/10.3390/photonics10090979