Watt-Level Diode-End-Pumped Self-Mode-Locked Tm,Ho:LLF Laser
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schliesser, A.; Picqué, N.; Hänsch, N.T. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar]
- Singh, U.N.; Walsh, B.M.; Yu, J.; Petros, M.; Kavaya, M.J.; Refaat, T.F.; Barnes, N.P. Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing. Opt. Mater. Express 2015, 5, 827–837. [Google Scholar] [CrossRef]
- Rieker, G.B.; Giorgetta, F.R.; Swann, W.C.; Kofler, J.; Zolot, A.M.; Sinclair, L.C.; Baumann, E.; Cromer, C.; Petron, G.; Sweeney, C.; et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 2014, 1, 290–298. [Google Scholar] [CrossRef]
- Amini-Nik, S.; Kraemer, D.; Cowan, M.L.; Gunaratne, K.; Nadesan, P.; Alman, B.A.; Dwayne Miller, R.J. Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery. PLoS ONE 2010, 5, e13053. [Google Scholar] [CrossRef]
- Haq, B.S.; Khan, H.U.; Alam, K.T.; Mateenullah, M.; Attaullah, S.; Zari, I. Femtosecond pulsed laser ablation of polyimide at oblique angles for medical applications. Appl. Opt. 2015, 54, 7413–7418. [Google Scholar] [CrossRef] [PubMed]
- Godard, A. Infrared (2–12 μm) solid-state laser sources: A review. C. R. Phys. 2007, 8, 1100–1128. [Google Scholar]
- Ma, J.; Qin, Z.P.; Xie, G.Q.; Qian, L.J.; Tang, D. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region. Appl. Phys. Rev. 2019, 6, 021317. [Google Scholar]
- Parsa, S.; Kumar, S.C.; Nandy, B.; Ebrahim-Zadeh, M. Yb-fiber-pumped, high-beam-quality, idler-resonant mid-infrared picosecond optical parametric oscillator. Opt. Express 2019, 27, 25436–25444. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.D.; Zhao, Y.G.; Loiko, P.; Mateos, X.; Guina, M.; Pan, Z.B.; Mero, M.; Griebner, U.; Petrov, V. Sub-50 fs pulse generation from a SESAM mode-locked Tm, Ho-codoped calcium aluminate laser. Opt. Lett. 2021, 46, 2642–2645. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Li, Y.; Zhao, S.Z.; Liu, Y.Z.; Li, T.; Hu, P.; Mao, J.J.; Yang, K.J.; Wang, C.; Feng, T.L. Diode-pumed Tm3+, Ho3+ co-doped GAGG mode-locking laser near the 2.1 μm wavelength region. Opt. Express 2022, 30, 13890–13897. [Google Scholar] [CrossRef]
- Antoine, B.; Oliver, J.P.C.; Daniel, M.; Daniel, E.M.J. Comparative study of high power Tm:YLF and Tm:LLF slab lasers in continuous wave regime. Opt. Express 2018, 26, 10559–10572. [Google Scholar]
- Dai, T.; Wang, Y.P.; Wu, X.S.; Wu, J.; Yao, B.Q.; Ju, Y.L.; Shen, Y.J. An injection-seeded Q-switched Ho:YLF laser by a tunable single-longitudinal-mode Tm, Ho:YLF laser at 2050.96 nm. Opt. Laser Technol. 2018, 106, 7–11. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhang, S.; Huang, J.J.; Ni, K.B. Theoretical end experimental investigation of polarization coexistence and switching in an optical bistability Tm, Ho:LLF laser. Opt. Express 2018, 26, 18783–18789. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xing, T.L.; Hu, S.W.; Wu, X.Y.; Wu, H.X.; Wang, J.Y.; Jiang, H.H. Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%. Opt. Express 2017, 25, 3373–3380. [Google Scholar] [CrossRef] [PubMed]
- Smolski, V.O.; Vasilyev, S.; Schunemann, P.G.; Mirov, S.B.; Vodopyanov, K.L. Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6–5.6 μm. Opt. Lett. 2015, 40, 2906–2908. [Google Scholar] [CrossRef]
- Pan, Z.B.; Loiko, P.; Wang, Y.C.; Zhao, Y.G.; Yuan, H.L.; Tang, K.Y.; Dai, X.J.; Cai, H.Q.; Serres, J.M.; Slimi, S.; et al. Disordered Tm3+, Ho3+-codoped CNGG garnet crystal: Towards efficient laser materials for ultrashort pulse generation at ~2 μm. J. Alloys Compd. 2021, 853, 157100. [Google Scholar] [CrossRef]
- Gatti, D.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P. Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers. Appl. Phys. B 2007, 86, 269–273. [Google Scholar] [CrossRef]
- Yang, K.; Bromberger, H.; Ruf, H.; Schäfer, H.; Neuhaus, J.; Dekorsy, T.; Grimm, C.V.; Helm, M.; Briermann, K.; Künzel, H. Passively mode-locked Tm,Ho:YAG laser at 2 μm based on saturable absorption of intersubband transitions in quantum wells. Opt. Express 2010, 18, 6537–6544. [Google Scholar] [CrossRef]
- Aleksandrov, V.; Gluth, A.; Petrov, V.; Buchvarov, I.; Choi, S.Y.; Kim, M.H.; Rotermund, F.; Mateos, X.; Díaz, F.; Griebner, U. Tm,Ho:KLu(WO4)2 laser mode-locked near 2 μm by single-walled carbon nanotubes. Opt. Express 2014, 22, 26872–26877. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Y.; Zhao, Y.; Kowalczyk, M.; Sotor, J.; Yuan, H.; Zhang, Y.; Dai, X.; Cai, H.; Bae, J.E.; et al. Sub-80 fs mode-locked Tm,Ho-codoped disordered garnet crystal oscillator operating at 2081 nm. Opt. Lett. 2018, 43, 5154–5157. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, L.; Bae, J.E.; Rotermund, F.; Wang, Y.; Zhao, Y.; Loiko, P.; Mateos, X.; Griebner, U.; Petrov, V.; et al. SWCNT-SA mode-locked Tm,Ho:LCLNGG laser. Opt. Express 2021, 29, 40323–40332. [Google Scholar] [CrossRef]
- Zhang, X.L.; Luo, Y.; Wang, T.H.; Dai, J.F.; Zhang, J.X.; Li, J.; Cui, J.H.; Huang, J.J. Cr:ZnS saturable absorber passively Q-switched mode-locking Tm,Ho:LLF laser. Appl. Opt. 2017, 56, 2973–2977. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.; Tyazhev, A.; Loiko, P.; Soulard, R.; Doualan, J.; Guillemot, L.; Braud, A.; Godin, T.; Camy, P.; Hideur, A. Passively mode-locked diode-pumped Tm,Ho:LiYF4 laser. Laser Phys. Lett. 2020, 17, 045801. [Google Scholar] [CrossRef]
- Yang, K.J.; Heinecke, D.C.; Kölbl, C.; Dekorsy, T.; Zhao, S.Z.; Zheng, L.H.; Xu, J.; Zhao, G.J. Mode-locked Tm,Ho:YAP laser around 2.1 μm. Opt. Express 2013, 21, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, V.; Gluth, A.; Petrov, V.; Buchvarov, I.; Steinmeyer, G.; Paajaste, J.; Suomalainen, S.; Härkönen, A.; Guina, M.; Mateos, X.; et al. Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-base SESAMs. Opt. Express 2015, 23, 4614–4619. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.J.; Xia, T.; Dong, Z.; You, L.F.; Zhang, M.X.; Zuo, Y.Y.; Li, K.; Liu, Q.; Lu, F.P. Passively mode-locked Tm,Ho:LLF laser at 1895 nm. J. Opt. 2019, 48, 209–213. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Zhang, X.; Mateos, X.; Pan, Z.; Loiko, P.; Zhou, W.; Xu, X.; Xu, J.; Shen, D.; et al. 87 fs mode-locked Tm,Ho:CaYAlO4 laser at ~2043 nm. Opt. Lett. 2018, 43, 915–918. [Google Scholar] [CrossRef]
- Spence, D.E.; Kean, P.N.; Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 1991, 16, 42–44. [Google Scholar] [CrossRef]
- Xie, G.Q.; Tang, D.Y.; Zhao, L.M.; Qian, L.J.; Ueda, K. High-power self-mode-locked Yb:Y2O3 ceramic laser. Opt. Lett. 2007, 32, 2741–2743. [Google Scholar] [CrossRef]
- Zhuang, W.Z.; Chang, M.T.; Liang, H.C.; Chen, Y.F. High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking. Opt. Lett. 2013, 38, 2596–2599. [Google Scholar] [CrossRef]
- Zhang, J.; Han, H.; Tian, W.; Lv, L.; Wang, Q.; Wei, Z. Diode-pumped 88-fs Kerr-lens mode-locked Yb:Y3Ga5O12. Opt. Express 2013, 21, 29867–29873. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Wang, Z.; Wei, L.; Peng, Y.; Zhang, J.; Zhu, Z.; Zhu, J.; Han, H.; Jia, Y.; Zheng, L.; et al. Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration. Opt. Express 2014, 22, 19040–19046. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Tzeng, Y.S.; Tang, C.Y.; Huang, Y.P.; Chen, Y.F. Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking. Opt. Express 2012, 20, 18230–18237. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.D.; Li, Y.Y.; Zhang, G.; Huang, Y.H.; Chen, Z.Q. Spontaneous picosecond pulse generation in a diode-pumped Nd:YAP laser. Opt. Express 2013, 21, 25091–25098. [Google Scholar] [CrossRef]
- Tuan, P.H.; Tsai, M.C.; Chen, Y.F. Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser. Opt. Express 2017, 25, 29000–29009. [Google Scholar] [CrossRef]
- Liang, H.C.; Wu, S.C. Diode-pumped orthogonally polarized self-mode-locked Nd:YLF lasers subject to gain competition and thermal lensing effect. Opt. Express 2017, 25, 13697–13704. [Google Scholar] [CrossRef]
- Tokurakawa, M.; Fujita, E.; Kränkel, C. Kerr-lens mode-locked Tm3+:Sc2O3 single-crystal laser in-band pumped by an Er:Yb fiber MOPA at 1611 nm. Opt. Lett. 2017, 42, 3185–3187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.J.; Zhang, H.K.; Fu, X.; Liu, Q. Compact Ho:YAG laser at 2.1 μm mode locked by re-absorption. IEEE Photonics Technol. Lett. 2019, 31, 222–225. [Google Scholar] [CrossRef]
- Cho, C.Y.; Chen, Y.F.; Zhang, G.; Chen, W.D.; Liang, H.C. Exploring the self-mode locking of the 2 μm Tm:YAG laser suppression of the self-pulsing dynamic. Opt. Lett. 2017, 42, 5226–5229. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Chen, W.; Loiko, P.; Wang, Y.; Pan, Z.; Yang, H.; Jing, W.; Huang, H.; Liu, J.; et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser. Opt. Lett. 2021, 46, 3428–3431. [Google Scholar] [PubMed]
- Yao, W.; Wang, Y.; Ahmed, S.; Hoffmann, M.; Delden, M.V.; Musch, T.; Saraceno, C.J. Low-noise, 2-W average power, 112-fs Kerr-lens mode-locked Ho:CALGO laser at 2.1 μm. Opt. Lett. 2023, 48, 2801–2804. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Petrov, V.; Griebner, U.; Zhang, G.; Loiko, P.; Mateos, X.; Bae, J.E.; Rotermund, F.; Xu, X.; Major, A.; et al. Kerr-lens mode-locked Tm,Ho:CALGO laser. In Proceedings of the 2022 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 15–20 May 2022. Technical Digest Series (Optica Publishing Group, 2022), paper SF1B.2. [Google Scholar]
- Walsh, B.M.; Barnes, N.P.; Petros, M.; Yu, J.; Singh, U.N. Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4. J. Appl. Phys. 2004, 95, 3255–3271. [Google Scholar]
- Aggarwal, R.L.; Ripin, D.J.; Ochoa, J.R.; Fan, T.Y. Measurement of thermos-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range. J. Appl. Phys. 2005, 98, 103514. [Google Scholar] [CrossRef]
- Zhang, X.L.; Yu, L.; Zhang, S.; Li, L.; Zhao, J.Q.; Cui, J.H. Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 μm. Opt. Express 2013, 21, 12629–12634. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Ma, L.; Liu, W.; Sun, C.; Han, H.; Hu, Q.; Zhang, S.; Kai, L. Watt-Level Diode-End-Pumped Self-Mode-Locked Tm,Ho:LLF Laser. Photonics 2023, 10, 1133. https://doi.org/10.3390/photonics10101133
Zhang S, Ma L, Liu W, Sun C, Han H, Hu Q, Zhang S, Kai L. Watt-Level Diode-End-Pumped Self-Mode-Locked Tm,Ho:LLF Laser. Photonics. 2023; 10(10):1133. https://doi.org/10.3390/photonics10101133
Chicago/Turabian StyleZhang, Su, Liheng Ma, Wen Liu, Chunsheng Sun, Hongwei Han, Qingping Hu, Shuang Zhang, and Li Kai. 2023. "Watt-Level Diode-End-Pumped Self-Mode-Locked Tm,Ho:LLF Laser" Photonics 10, no. 10: 1133. https://doi.org/10.3390/photonics10101133
APA StyleZhang, S., Ma, L., Liu, W., Sun, C., Han, H., Hu, Q., Zhang, S., & Kai, L. (2023). Watt-Level Diode-End-Pumped Self-Mode-Locked Tm,Ho:LLF Laser. Photonics, 10(10), 1133. https://doi.org/10.3390/photonics10101133