Calculation of the Proportion of Free Water Molecules in Aqueous Solutions Using the Parameters of Their Dielectric Permittivity in the Terahertz Range, Based on the Onsager Theory
Abstract
:1. Introduction
2. Theoretical Background
2.1. Models of Water Polarization
2.2. Polarization in an Alternating Electric Field
2.3. Complex Permittivity of Water in the THz Range
2.4. Methods for Calculating the Proportion of Free Water Molecules in Aqueous Solutions Based on Permittivity Parameters in the THz Range
3. Calculation of the Proportion of Free Water Molecules in Aqueous Solutions Based on the Permittivity Parameters in the THz Range Using the Onsager Theory
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernal, J.D.; Fowler, R. A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions. J. Chem. Phys. 1933, 1, 515–548. [Google Scholar] [CrossRef]
- Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1946. [Google Scholar]
- Samoilov, O.Y. Structure of Aqueous Electrolyte Solutions and the Hydration of Ions; Consultants Bureau: New York, NY, USA, 1965. [Google Scholar]
- Fisher, I.Z. Statistical Theory of Liquids; University of Chicago Press: Chicago, IL, USA, 1964. [Google Scholar]
- Penkov, N.; Shvirst, N.; Yashin, V.; Fesenko, E., Jr.; Fesenko, E. Terahertz Spectroscopy Applied for Investigation of Water Structure. J. Phys. Chem. B 2015, 119, 12664–12670. [Google Scholar] [CrossRef] [PubMed]
- Marti, J.; Padro, J.A.; Guardia, E. Molecular Dynamics Simulation of Liquid Water Along the Coexistence Curve: Hydrogen Bonds and Vibrational Spectra. J. Chem. Phys. 1996, 105, 639–649. [Google Scholar] [CrossRef]
- Walrafen, G.E.; Fisher, M.R.; Hokmabadi, M.S.; Yang, W.-H. Temperature Dependence of the Low- and High-Frequency Raman Scattering from Liquid Water. J. Chem. Phys. 1986, 85, 6970–6982. [Google Scholar] [CrossRef]
- Barthel, J.; Bachhuber, K.; Buchner, R.; Hetzenauer, H. Dielectric Spectra of Some Common Solvents in the Microwave Region. Water and Lower Alcohols. Chem. Phys. Lett. 1990, 165, 369–373. [Google Scholar] [CrossRef]
- Buchner, R.; Barthel, J.; Stauber, J. The Dielectric Relaxation of Water Between 0° C and 35° C. Chem. Phys. Lett. 1999, 306, 57–63. [Google Scholar] [CrossRef]
- Møller, U.; Cooke, D.G.; Tanaka, K.; Jepsen, P.U. Terahertz Reflection Spectroscopy of Debye Relaxation in Polar Liquids. J. Opt. Soc. Am. B 2009, 26, A113–A125. [Google Scholar] [CrossRef]
- Von Hippel, A.R. The Dielectric Relaxation Spectra of Water, Ice, and Aqueous Solutions, and Their Interpretation. 2. Tentative Interpretation of the Relaxation Spectrum of Water in the Time and Frequency Domain. IEEE Trans. Electr. Insul. 1988, 23, 817–823. [Google Scholar] [CrossRef]
- Laage, D.; Hynes, J.T. A Molecular Jump Mechanism of Water Reorientation. Science 2006, 311, 832–835. [Google Scholar] [CrossRef]
- Yada, H.; Nagai, M.; Tanaka, K. Origin of the Fast Relaxation Component of Water and Heavy Water Revealed by Terahertz Time-Domain Attenuated Total Reflection Spectroscopy. Chem. Phys. Lett. 2008, 464, 166–170. [Google Scholar] [CrossRef]
- Shiraga, K.; Suzuki, T.; Kondo, N.; De Baerdemaeker, J.; Ogawa, Y. Quantitative Characterization of Hydration State and Destructuring Effect of Monosaccharides and Disaccharides on Water Hydrogen Bond Network. Carbohydr. Res. 2015, 406, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraga, K.; Adachi, A.; Nakamura, M.; Tajima, T.; Ajito, K.; Ogawa, Y. Characterization of the Hydrogen-Bond Network of Water Around Sucrose and Trehalose: Microwave and Terahertz Spectroscopic Study. J. Chem. Phys. 2017, 146, 105102. [Google Scholar] [CrossRef] [PubMed]
- Penkov, N.V.; Yashin, V.A.; Fesenko, E.E., Jr.; Fesenko, E.E. Calculation of the Amount of Free Water Molecules in Aqueous Solutions by Means of Spectral Parameters from the Terahertz Frequency Domain Taking into Account Processes of Screening. Biophysics 2014, 59, 347–350. [Google Scholar] [CrossRef]
- Fröhlich, H. Theory of Dielectrics, 2nd ed.; Clarendon Pres: Oxford, UK, 1958; 192p. [Google Scholar] [CrossRef]
- Debye, P.J.W. Polar Molecules; Dover Publications: New York, NY, USA, 1929; 172p. [Google Scholar]
- Onsager, L. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58, 1486–1493. [Google Scholar] [CrossRef]
- Kirkwood, J.G. The Dielectric Polarization of Polar Liquids. J. Chem. Phys. 1939, 7, 911–919. [Google Scholar] [CrossRef]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions: The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion, 2nd ed.; Academic Press: New York, NY, USA, 1955; 512p. [Google Scholar]
- Choy, T.C. Effective Medium Theory: Principle and Applications, 1st ed.; Oxford University Press: Oxford, UK, 1999; 200p. [Google Scholar]
- Sihvola, A. Mixing Rules with Complex Dielectric Coefficients. Subsurf. Sens. Technol. Appl. 2000, 1, 393–415. [Google Scholar] [CrossRef]
- Lorentz, H.A. The Theory of Electrons, 2nd ed.; Dover Publications: New York, NY, USA, 1952; 343p. [Google Scholar]
- Nazarov, M.M.; Cherkasova, O.P.; Shkurinov, A.P. Study of the Dielectric Function of Aqueous Solutions of Glucose and Albumin by THz Time-Domain Spectroscopy. Quantum Electron. 2016, 46, 488–495. [Google Scholar] [CrossRef]
- Penkov, N.V.; Shvirst, N.E.; Yashin, V.A.; Fesenko, E.E. On Singularities of Molecular Relaxation in Water Solutions. Biophysics 2013, 58, 731–738. [Google Scholar] [CrossRef]
- Ellison, W.J. Permittivity of Pure Water, at Standard Atmospheric Pressure, Over the Frequency Range 0−25 THz and the Temperature Range 0−100 °C. J. Phys. Chem. Ref. Data 2007, 36, 1–18. [Google Scholar] [CrossRef]
- Lee, Y.-S. Principles of Terahertz Science and Technology; Springer: New York, NY, USA, 2009. [Google Scholar]
- Penkov, N.V.; Penkova, N. Key Differences of the Hydrate Shell Structures of ATP and Mg·ATP Revealed by Terahertz Time-Domain Spectroscopy and Dynamic Light Scattering. J. Phys. Chem. B 2021, 125, 4375–4382. [Google Scholar] [CrossRef] [PubMed]
- Murphy, W.F. The Rayleigh Depolarization Ratio and Rotational Raman Spectrum of Water Vapor and the Polarizability Components for the Water Molecule. J. Chem. Phys. 1977, 67, 5877–5882. [Google Scholar] [CrossRef]
- Penkov, N.; Yashin, V.; Fesenko, E., Jr.; Manokhin, A.; Fesenko, E. A Study of the Effect of a Protein on the Structure of Water in Solution Using Terahertz Time-Domain Spectroscopy. Appl. Spectrosc. 2018, 72, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Penkov, N.V.; Yashin, V.A.; Belosludtsev, K.N. Hydration Shells of DPPC Liposomes from the Point of View of Terahertz Time-Domain Spectroscopy. Appl. Spectrosc. 2021, 75, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Penkova, N.A.; Sharapov, M.G.; Penkov, N.V. Hydration Shells of DNA From the Point of View of Terahertz Time-Domain Spectroscopy. Int. J. Mol. Sci. 2021, 22, 11089. [Google Scholar] [CrossRef]
- Penkov, N.V. Relationships Between Molecular Structure of Carbohydrates and Their Dynamic Hydration Shells Revealed by Terahertz Time-Domain Spectroscopy. Int. J. Mol. Sci. 2021, 22, 11969. [Google Scholar] [CrossRef] [PubMed]
- The International Association for the Properties of Water and Steam. Gaithersburg, MD, USA, 9–14 September 2001. Available online: http://www.iapws.org/relguide/fundam.pdf (accessed on 28 December 2022).
- Penkov, N.V.; Penkova, N.A.; Lobyshev, V.I. Special Role of Mg2+ in the Formation of the Hydration Shell of Adenosine Triphosphate. Phys. Wave Phenom. 2022, 30, 344–350. [Google Scholar] [CrossRef]
- Penkov, N.V.; Penkova, N.A. Effective Medium Model Applied to Biopolymer Solutions. Appl. Spectrosc. 2021, 75, 1510–1515. [Google Scholar] [CrossRef] [PubMed]
Aqueous Solution | Calculation by the Equation (9) | Calculation by the Equation (10) 1 | Calculation by the Equation (14) 1 |
---|---|---|---|
CaCl2 0.5 M solution at 25 °C [5] | 2.01 | 1.81 | 1.99 |
KCl 1 M solution at 25 °C [5] | 2.41 | 2.12 | 2.38 |
CsCl 1 M solution at 25 °C [5] | 2.81 | 2.52 | 2.90 |
BSA 48 mg/mL solution at pH = 6, 25 °C [31] | 3.75 | 3.99 | 5.00 |
Suspension of DPPC liposomes 20 mg/mL in the liquid crystalline phase at 45 °C [32] | 2.72 | 3.10 | 3.64 |
DNA solution 25 mg/mL at 25 °C [33] | 4.77 | 4.01 | 5.14 |
Glucose solution 50 mg/mL at 25 °C [34] | 4.50 | 3.90 | 4.95 |
Water at 25 °C [34] | 3.76 | 3.78 | 4.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penkov, N.V. Calculation of the Proportion of Free Water Molecules in Aqueous Solutions Using the Parameters of Their Dielectric Permittivity in the Terahertz Range, Based on the Onsager Theory. Photonics 2023, 10, 44. https://doi.org/10.3390/photonics10010044
Penkov NV. Calculation of the Proportion of Free Water Molecules in Aqueous Solutions Using the Parameters of Their Dielectric Permittivity in the Terahertz Range, Based on the Onsager Theory. Photonics. 2023; 10(1):44. https://doi.org/10.3390/photonics10010044
Chicago/Turabian StylePenkov, Nikita V. 2023. "Calculation of the Proportion of Free Water Molecules in Aqueous Solutions Using the Parameters of Their Dielectric Permittivity in the Terahertz Range, Based on the Onsager Theory" Photonics 10, no. 1: 44. https://doi.org/10.3390/photonics10010044
APA StylePenkov, N. V. (2023). Calculation of the Proportion of Free Water Molecules in Aqueous Solutions Using the Parameters of Their Dielectric Permittivity in the Terahertz Range, Based on the Onsager Theory. Photonics, 10(1), 44. https://doi.org/10.3390/photonics10010044